
Motor Control Blockset™
Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ Reference
© COPYRIGHT 2020–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release R2020b)
March 2021 Online only Revised for Version 1.2 (Release R2021a)
September 2021 Online only Revised for Version 1.3 (Release R2021b)
March 2022 Online only Revised for Version 1.4 (Release R2022a)
September 2022 Online only Revised for Version 1.5 (Release R2022b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

iii

Contents

Blocks

1

DQ Limiter
Saturate voltages (or current) in the dq reference frame
Library: Motor Control Blockset / Controls / Control Reference

Description
The DQ Limiter block generates saturated values of the input voltages (or current) in the dq
reference frame, depending on the specified saturation limit and the selected method of saturation.

The block accepts reference values of d and q axis voltages (or current) and outputs the
corresponding saturated values. The block also provides the unsaturated peak value of the reference
dq voltages (or current), which you can use to enable field weakening control.

Equations

These equations describe the computation of saturated dq voltage (or current) values by the block.

For DQ equivalence:

magref = (dref)2 + (qref)2

When magref > xmax.

•
dsat = dref

magref × xmax

•
qsat = qref

magref × xmax

When magref ≤ xmax.

• dsat = dref

• qsat = qref

Where, xmax is the saturation limit.

When D-axis is prioritized:

magref = (dref)2 + (qref)2

dsat = min max dref , − xmax , xmax

qsat = sign qref × min qref , xmax
2 − dsat 2

1 Blocks

1-2

Where, xmax is the saturation limit.

When Q-axis is prioritized:

magref = (dref)2 + (qref)2

qsat = min max qref , − xmax , xmax

dsat = sign dref × min dref , xmax
2 − qsat 2

Where, xmax is the saturation limit.

Ports
Input

dref — Reference d-axis voltage (or current)
scalar

Reference voltage (or current) value along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

qref — Reference q-axis voltage (or current)
scalar

Reference voltage (or current) value along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

satMethod — Saturation technique
scalar

Saturation method that the block uses to initiate saturation. The port accepts one of the following
integer values:

• 1 – Prioritize D-axis
• 2 – Prioritize Q-axis
• Any other positive integer – D-Q equivalence method

Dependencies

To enable this port, select Input port for the Saturation method parameter.
Data Types: uint16

satLim — Saturation limit
scalar

Saturation limit value that the block uses to initiate saturation. The port accepts values greater than
or equal to 0.

Dependencies

To enable this port, select Input port for the Saturation limit parameter.

 DQ Limiter

1-3

Data Types: single | double | fixed point

Output

dsat — Saturated d-axis voltage (or current)
scalar

Saturated voltage (or current) value along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

qsat — Saturated q-axis voltage (or current)
scalar

Saturated voltage (or current) value along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

magref — Unsaturated peak value of block inputs
scalar

Unsaturated peak value of the input voltages (or current).
Data Types: single | double | fixed point

Parameters
Saturation method — Saturation method selection technique
Specify via dialog (default) | Input port

Select whether the block should use dialog box or input port to specify the saturated method.

Programmatic Use

satMethodInputType

Saturation method selected — Saturation method used by block
D-Q equivalence (default) | Prioritize D axis | Prioritize Q axis

Select the saturation method that the block should use.

Dependencies

To enable this parameter, set Saturation method to Specify via dialog.

Programmatic Use

satMethodSelected

Saturation limit — Saturation limit selection technique
Specify via dialog (default) | Input port

Select whether the block should use dialog box or input port to specify the saturated limit.

Programmatic Use

satLimitInputType

1 Blocks

1-4

Saturation limit value — Phase voltage (or current) peak limit
1 (default) | scalar

The maximum magnitude of voltage (or current) above which the block outputs are limited.

D− Q saturation limit (current) is usually the rated current of the motor. When you work with the
Per-Unit system (PU), you should convert the rated current of the motor to Per-Unit value with
respect to the base current.

D− Q saturation limit voltage is usually the maximum phase voltage supplied by the inverter.

Generally it is
Vdc

3 for Space Vector PWM and
Vdc
2 for Sinusoidal PWM, where Vdc is the DC link

voltage of the inverter.

Note You can enter either per unit or SI unit voltage (or current) value in this parameter (unit of the
entered value should be same as that of the dref and qref inputs). For optimum performance, we
recommend that you provide a per unit value.

Dependencies

To enable this parameter, set Saturation limit to Specify via dialog.

Programmatic Use

Vmax

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder™ provides additional configuration options that affect HDL implementation and
synthesized logic.

Supported Block Parameters

For HDL code generation with the DQ Limiter block, set these parameters:

• Set Saturation method to Specify via dialog
• Set Saturation method selected to D-Q equivalence
• Set Saturation limit to Specify via dialog

HDL Architecture

This block has one default HDL architecture.

 DQ Limiter

1-5

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
PI Controller | ACIM Feed Forward Control | Inverse Park Transform | MTPA Control Reference |
Vector Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-6

PMSM FeedForward Control
Decouple d-axis and q-axis current to eliminate disturbance
Library: Motor Control Blockset / Controls / Control Reference

Description
The PMSM FeedForward Control block decouples d-axis and q-axis current controls and generates
the corresponding feed-forward voltage gains to enable field-oriented control of a permanent magnet
synchronous motor (PMSM).

The block accepts feedback values of d-axis and q-axis currents and the mechanical speed of the
rotor.

The block generates feed-forward gains from motor parameters specified using one of these methods.

• Lumped parameters with d-axis and q-axis stator winding inductances and permanent magnet flux
linkage.

• Nonlinear model with d-axis and q-axis stator winding inductances and permanent magnet flux
linkage lookup tables.

• Nonlinear model with d-axis and q-axis flux linkage lookup tables.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block scales down the internal
parameters to match the per-unit scale by default. You can also configure the block to convert the
inputs to SI units before performing any computation and convert them back to per unit values after
calculating the output.

These equations describe the computation of feed-forward gain by the block.

ωe = pωm

Vd
FF = − ωeψq = − ωeLqIq

Vq
FF = ωeψd = ωeLdId + ωeψm

where:

• p is the number of pole pairs available in the motor.
• ωe is the electrical speed corresponding to frequency of stator voltages (rad/s).
• Ld and Lq are the d-axis and q-axis stator winding inductances (henry).
• Id and Iq are the d-axis and q-axis currents (amperes).
• ψd and ψqare the magnetic fluxes along the d- and q-axes (weber).

 PMSM FeedForward Control

1-7

• ψm is the permanent magnet flux linkage (weber).

For a detailed set of equations and assumptions that Motor Control Blockset uses for a PMSM, see
“Mathematical Model of PMSM” on page 1-149.

Ports
Input

Id — D-axis current
scalar

Current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Iq — Q-axis current
scalar

Current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Ld — D-axis inductance
scalar

D-axis winding inductance (in henry).

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

Lq — Q-axis inductance
scalar

Q-axis winding inductance (in henry).

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

FluxPM — Permanent magnet flux linkage
scalar

Peak permanent magnet flux linkage (in weber).

1 Blocks

1-8

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

Output

VdFF — D-axis feed-forward voltage gain
scalar

Feed-forward voltage gain along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

VqFF — Q-axis feed-forward voltage gain
scalar

Feed-forward voltage gain along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Motor parameter input method — Type of motor parameters
Linear model with lumped parameters (default) | Non-linear model with D,Q-flux
linkage LUTs | Non-linear model with Ld,Lq and FluxPM LUTs | Input port based
Ld,Lq and FluxPM

Motor parameters that the block uses to generate feedforward gains.

• Linear model with lumped parameters — Generate gains using lumped-circuit values for
motor parameters Ld, Lq, and FluxPM.

• Non-linear model with D,Q-flux linkage LUTs — Generate gains using d-axis flux
linkage FluxD and q-axis flux linkage FluxQ lookup tables (LUTs).

• Non-linear model with Ld,Lq and FluxPM LUTs — Generate gains using Ld, Lq, and
FluxPM LUTs, specified as block parameters.

• Input port based Ld,Lq and FluxPM — Generate gains using Ld, Lq, and FluxPM LUTs,
specified as block inputs.

Linear Model with Lumped Parameters

Stator d-axis inductance (H) — D-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (in henry) along the direct-axis of the rotating dq reference frame.

 PMSM FeedForward Control

1-9

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Stator q-axis inductance (H) — Q-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (in henry) along the quadrature-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Permanent magnet flux linkage (Wb) — PM flux linkage
6.4e-3 (default) | scalar

Peak permanent magnet flux linkage (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Nonlinear Model with FluxD and FluxQ Lookup Tables

D-axis current vector (A) — D-axis current lookup vector
[-40, -20, 0, 20] (default) | vector

D-axis current vector used in the following lookup tables, depending on the method used to specify
the motor parameters.

• FluxD(id,iq) and FluxQ(id,iq) for the Non-linear model with D,Q-flux linkage LUTs
method.

• Ld(id,iq), Lq(id,iq), and FluxPM(id,iq) for the Non-linear model with Ld,Lq and FluxPM LUTs
method.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs or Non-linear model with Ld,Lq and FluxPM LUTs.

Q-axis current vector (A) — Q-axis current lookup vector
[-40, -20, 0, 20, 40] (default) | vector

Q-axis current vector used in the following lookup tables, depending on the method used to specify
the motor parameters.

• FluxD(id,iq) and FluxQ(id,iq) for the Non-linear model with D,Q-flux linkage LUTs
method.

• Ld(id,iq), Lq(id,iq), and FluxPM(id,iq) for the Non-linear model with Ld,Lq and FluxPM LUTs
method.

1 Blocks

1-10

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs or Non-linear model with Ld,Lq and FluxPM LUTs.

D-axis flux linkage (Wb) — D-axis flux linkage lookup data
[-1.6,-1.6,-1.6,-1.6,-1.6;2.4,2.4,2.4,2.4,2.4;6.4,6.4,6.4,6.4,6.4;10.4,10.4,1
0.4,10.4,10.4]*1e-3 (default) | matrix

D-axis flux linkage FluxD(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs.

Q-axis flux linkage (Wb) — Q-axis flux linkage lookup data
[-8,-4,0,4,8;-8,-4,0,4,8;-8,-4,0,4,8;-8,-4,0,4,8]*1e-3 (default) | matrix

Q-axis flux linkage FluxQ(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs.

Nonlinear Model with Ld, Lq, and FluxPM Lookup Tables

Ld matrix (H) — D-axis inductance lookup data
0.2e-3 * ones(4, 5) (default) | matrix

D-axis inductance Ld(id,iq) lookup table data (in henry).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

Lq matrix (H) — Q-axis inductance lookup data
0.2e-3 * ones(4, 5) (default) | matrix

Q-axis inductance Lq(id,iq) lookup table data (in henry).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

PM flux linkage matrix (Wb) — PM flux linkage lookup data
6.4e-3 * ones(4, 5) (default) | matrix

Permanent magnet flux linkage FluxPM(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

 PMSM FeedForward Control

1-11

Motor Configuration

Output Saturation (V) — Saturation limit for output values
24/sqrt(3) (default) | scalar

Saturation limit (in volts) for the output voltages Vd
FF and Vq

FF.

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Nominal voltage limit
24/sqrt(3) (default) | scalar

Base voltage (in volts) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Nominal current limit
19.3 (default) | scalar

Base current (in amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Nominal speed limit
4107 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Allow scaled-down motor parameters with CodeGen (higher precision with Fixed-
Point data type) — Scale down internal parameters to match per-unit scale
on (default) | off

Option to scale down internal parameters to match per-unit scale when generating code.

• When you enable this option, the block scales down the internal constants and coefficients to
match the per-unit scale. This allows for higher precision when you use the fixed-point data type.
If you use this option with the single or double data type, some precision loss can occur depending
on the number of bits allotted to the integer portion.

• When you disable this option, the block converts all the constants and coefficients used for
internal calculations to SI units and then converts them back to the PU scale. This allows you to
update the lookup table values in the generated code, typically, for applications such as controller
tuning or end-of-line operations. You can also update the values manually for debugging or reusing
previously generated code.

1 Blocks

1-12

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Feed Forward Control | Park Transform | Speed Measurement | PI Controller | DQ Limiter

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 PMSM FeedForward Control

1-13

PMSM Torque Estimator
Estimate electromechanical torque and power
Library: Motor Control Blockset / Controls / Control Reference

Description
The PMSM Torque Estimator block generates electromechanical torque and power estimates to
enable field-oriented control of a permanent magnet synchronous motor (PMSM). The block outputs
mathematically computed electromechanical torque for the given motor parameters. To measure the
torque value accurately, consider using a physical sensor.

The block accepts feedback values of d- and q-axis currents and mechanical speed as inputs.

The block generates these estimates from motor parameters specified using one of these methods.

• Lumped parameters with d-axis and q-axis stator winding inductances and permanent magnet flux
linkage.

• Nonlinear model with d-axis and q-axis stator winding inductances and permanent magnet flux
linkage lookup tables.

• Nonlinear model with d-axis and q-axis flux linkage lookup tables.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block scales down the internal
parameters to match the per-unit scale by default. You can also configure the block to convert the
inputs to SI units before performing any computation and convert them back to per unit values after
calculating the output.

These equations describe the computation of electromechanical torque and power estimates by the
block.

Te = 3
2p ψmIq + Ld− Lq IdIq

or

Te = 3
2p(ψdiq− ψqid)

Pe = Te ⋅ ωm

where:

• Ld and Lq are the d-axis and q-axis stator winding inductances (henry).
• Id and Iq are the d-axis and q-axis current (amperes).

1 Blocks

1-14

• ψm is the permanent magnet flux linkage (weber).
• ψd and ψqare the magnetic fluxes along the d- and q-axes (weber).
• p is the number of pole pairs available in the motor.
• ωm is the mechanical speed of the rotor (rad/s).

For a detailed set of equations and assumptions that Motor Control Blockset uses for a PMSM, see
“Mathematical Model of PMSM” on page 1-149.

Ports
Input

Id — D-axis current
scalar

Current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Iq — Q-axis current
scalar

Current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Ld — D-axis inductance
scalar

D-axis winding inductance (in henry).

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

Lq — Q-axis inductance
scalar

Q-axis winding inductance (in henry).

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

 PMSM Torque Estimator

1-15

FluxPM — Permanent magnet flux linkage
scalar

Peak permanent magnet flux linkage (in weber).

Dependencies

To enable this input port, set Motor parameter input method to Input port based Ld, Lq
and FluxPM.
Data Types: single | double | fixed point

Output

Te — Electromechanical torque
scalar

Electromechanical torque of the rotor.
Data Types: single | double | fixed point

Pe — Electromechanical power
scalar

Electromechanical power of the rotor.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Motor parameter input method — Type of motor parameters
Linear model with lumped parameters (default) | Non-linear model with D,Q-flux
linkage LUTs | Non-linear model with Ld,Lq and FluxPM LUTs | Input port based
Ld, Lq and FluxPM

Motor parameters that the block uses to generate torque and power estimates.

• Linear model with lumped parameters — Generate estimates using lumped-circuit values
for motor parameters Ld, Lq, and FluxPM.

• Non-linear model with D,Q-flux linkage LUTs — Generate estimates using d-axis flux
linkage FluxD and q-axis flux linkage FluxQ lookup tables (LUTs).

• Non-linear model with Ld,Lq and FluxPM LUTs — Generate estimates using Ld, Lq, and
FluxPM LUTs, specified as block parameters.

• Input port based Ld,Lq and FluxPM — Generate estimates using Ld, Lq, and FluxPM LUTs,
specified as block inputs.

Linear Model with Lumped Parameters

Stator d-axis inductance (H) — D-axis stator winding inductance
0.2e-3 (default) | scalar

1 Blocks

1-16

Stator winding inductance (henry) along the direct-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Stator q-axis inductance (H) — Q-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (henry) along the quadrature-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Permanent magnet flux linkage (Wb) — Permanent magnet flux linkage
6.4e-3 (default) | scalar

Peak permanent magnet flux linkage (weber).

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Nonlinear Model with FluxD and FluxQ Lookup Tables

D-axis current vector (A) — D-axis current lookup vector
[-40, -20, 0, 20] (default) | vector

D-axis current vector used in the following lookup tables, depending on the method used to specify
the motor parameters.

• FluxD(id,iq) and FluxQ(id,iq) for the Non-linear model with D,Q-flux linkage LUTs
method.

• Ld(id,iq), Lq(id,iq), and FluxPM(id,iq) for the Non-linear model with Ld,Lq and FluxPM LUTs
method.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs or Non-linear model with Ld,Lq and FluxPM LUTs.

Q-axis current vector (A) — Q-axis current lookup vector
[-40, -20, 0, 20, 40] (default) | vector

Q-axis current vector used in the following lookup tables, depending on the method used to specify
the motor parameters.

• FluxD(id,iq) and FluxQ(id,iq) for the Non-linear model with D,Q-flux linkage LUTs
method.

• Ld(id,iq), Lq(id,iq), and FluxPM(id,iq) for the Non-linear model with Ld,Lq and FluxPM LUTs
method.

 PMSM Torque Estimator

1-17

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs or Non-linear model with Ld,Lq and FluxPM LUTs.

D-axis flux linkage (Wb) — D-axis flux linkage lookup data
[-1.6,-1.6,-1.6,-1.6,-1.6;2.4,2.4,2.4,2.4,2.4;6.4,6.4,6.4,6.4,6.4;10.4,10.4,1
0.4,10.4,10.4]*1e-3 (default) | matrix

D-axis flux linkage FluxD(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs.

Q-axis flux linkage (Wb) — Q-axis flux linkage lookup data
[-8,-4,0,4,8;-8,-4,0,4,8;-8,-4,0,4,8;-8,-4,0,4,8]*1e-3 (default) | matrix

Q-axis flux linkage FluxQ(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with D,Q-
flux linkage LUTs.

Nonlinear Model with Ld, Lq, and FluxPM Lookup Tables

Ld matrix (H) — D-axis inductance lookup data
0.2e-3 * ones(4, 5) (default) | matrix

D-axis inductance Ld(id,iq) lookup table data (in henry).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

Lq matrix (H) — Q-axis inductance lookup table data
0.2e-3 * ones(4, 5) (default) | matrix

Q-axis inductance Lq(id,iq) lookup table data (in henry).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

PM flux linkage matrix (Wb) — PM flux linkage lookup data
6.4e-3 * ones(4, 5) (default) | matrix

Permanent magnet flux linkage FluxPM(id,iq) lookup table data (in weber).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

1 Blocks

1-18

Motor Configuration

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Nominal voltage limit
24/sqrt(3) (default) | scalar

Base voltage (in volts) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Nominal current limit
19.3 (default) | scalar

Base current (in amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Nominal speed limit
4107 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Nominal torque limit
0.74112 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

You cannot configure this parameter when you set Motor parameter input method to Linear
model with lumped parameters or Non-linear model with Ld,Lq and FluxPM LUTs. The
block computes its value using the other parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Base power (W) — Nominal power limit
401.143 (default) | scalar

Base power (in W) for per-unit system. See “Per-Unit System” page for more details.

You cannot configure this parameter when you set Motor parameter input method to Linear
model with lumped parameters or Non-linear model with Ld,Lq and FluxPM LUTs. The
block computes its value using the other parameters.

 PMSM Torque Estimator

1-19

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Allow scaled-down motor parameters with CodeGen (higher precision with Fixed-
Point data type) — Scale down internal parameters to match per-unit scale
on (default) | off

Option to scale down internal parameters to match per-unit scale when generating code.

• When you enable this option, the block scales down the internal constants and coefficients to
match the per-unit scale. This allows for higher precision when you use the fixed-point data type.
If you use this option with the single or double data type, some precision loss can occur depending
on the number of bits allotted to the integer portion.

• When you disable this option, the block converts all the constants and coefficients used for
internal calculations to SI units and then converts them back to the PU scale. This allows you to
update the lookup table values in the generated code, typically, for applications such as controller
tuning or end-of-line operations. You can also update the values manually for debugging or reusing
previously generated code.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Torque Estimator | Park Transform | Speed Measurement | MTPA Control Reference | Vector
Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-20

Position Generator
Generate position ramp of fixed frequency
Library: Motor Control Blockset / Controls / Control Reference

Description
The Position Generator block generates a position ramp signal (with a frequency that is identical to
that of the reference voltage signal) using the position increment value of the reference signal.

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Ports
Input

∆θ — Position increment value
scalar

Position increment value of a fixed frequency reference voltage signal (in either per unit, radians, or
degrees). These equations describe how the block computes the position increment:

• Δθ (per unit) = Frequency × Sample Time
• Δθ (radians) = 2π × Frequency × Sample Time
• Δθ (degrees) = 360 × Frequency × Sample Time

Data Types: single | double | fixed point

Reset — External reset signal
scalar

 Position Generator

1-21

External pulse that resets the position ramp output based on the value of the External reset
parameter.
Dependencies

To enable this port, set External reset to either active high resets to zero or active high
resets to initial condition.
Data Types: single | double | fixed point

Output

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal (in either per unit, radians, or degrees).
Data Types: single | double | fixed point

Parameters
Theta Units — Unit of θ
Per-unit (default) | Radians | Degrees

Unit of the input position increment value and the output reference voltage position.

Initial theta output — Initial value of θe
0 (default) | scalar

Output position ramp value (in either per unit, radians, or degrees) at initial time (0 seconds).

External reset — Output value on reset
none (default) | active high resets to zero | active high resets to initial
condition

Output position ramp value (in either per unit, radians, or degrees) at the time when the block
receives an active high external reset pulse. You can reset the output to either zero or to equal the
value of the Initial theta output parameter.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
ACIM Slip Speed Estimator | Sine-Cosine Lookup | 3-Phase Sine Voltage Generator | Vector Control
Reference

1 Blocks

1-22

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Position Generator

1-23

Derating Function
Compute derating factor
Library: Motor Control Blockset / Controls / Controllers

Description
The Derating Function block generates the derating factor (y) according to the feedback (ffeedback)
and maximum limit (fmax) values of the input reference signal.

The derating factor:

• Remains equal to one when ffeedback lies between positive and negative values of the Derating
threshold. The derating factor varies linearly outside this range according to ffeedback.

• Remains equal to zero when the reference signal lies beyond (positive or negative) fmax.

Therefore, you can use the generated derating factor to derate a control signal after the reference
signal crosses the specified Derating threshold.

This figure shows the block output when you use a sinusoidal wave as ffeedback.

1 Blocks

1-24

Equations

The Derating threshold parameter, x indicates the percentage of peak amplitude for the reference
signal. The Derating threshold is 0.5 in the block output shown, which results in a threshold value
of 2 (for the peak amplitude value of 4 for the sinusoidal reference signal).

x = [0, 1)

This equation describes how the block computes the derating factor (y).

Derating f actor (y) = 1 −
f f eedback− xfmax

(1 − x)fmax

Ports
Input

fmax — Maximum reference signal limit
scalar

Maximum limit of the reference signal value beyond which the derating factor becomes zero.
Data Types: single | double | fixed point

 Derating Function

1-25

ffeedback — Reference feedback signal
scalar

Reference signal that the block uses to generate the derating factor, which you can then use to derate
a control signal.
Data Types: single | double | fixed point

Output

y — Derating factor
scalar

Derating factor that the block generates based on the feedback and maximum limit values of the
reference signal when the signal exceeds the value of the Derating threshold parameter.
Data Types: single | double | fixed point

Parameters
Derating threshold — Threshold beyond which derating must occur
0.9 (default) | scalar in the range [0,1)

The reference signal value beyond which the block generates the derating factor.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | MTPA Control Reference | Vector Control Reference | PMSM Torque Estimator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-26

PI Controller
Discrete-time PID Controller
Library: Motor Control Blockset / Controls / Controllers

Description
The PI Controller block implements a discrete-time PID controller (PID, PI, PD, P only, or I only). The
block is identical to the Discrete PID Controller Simulink® block.

The block output is a weighted sum of the input signal, the integral of the input signal, and the
derivative of the input signal. The weights are the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action.

• Controller type (PID, PI, PD, P only, or I only) — See the Controller parameter.
• Controller form (Parallel or Ideal) — See the Form parameter.
• Time domain (continuous or discrete) — See the Time domain parameter.
• Initial conditions and reset trigger — See the Source and External reset parameters.
• Output saturation limits and built-in anti-windup mechanism — See the Limit output parameter.
• Signal tracking for bumpless control transfer and multiloop control — See the Enable tracking

mode parameter.

As you change these options, the internal structure of the block changes by activating different
variant subsystems. (For more information, see “Implement Variations in Separate Hierarchy Using
Variant Subsystems”). To examine the internal structure of the block and its variant subsystems,
right-click the block and select Mask > Look Under Mask.

PID Gain Tuning

The PID controller gains are tunable either manually or automatically. Automatic tuning requires
Simulink Control Design™ software. For more information about automatic tuning, see the Select
tuning method parameter.

Ports
Input

Port_1(u) — Error signal input
scalar | vector

Difference between a reference signal and the output of the system under control.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

 PI Controller

1-27

P — Proportional gain
scalar | vector

Proportional gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculations in your model and feed them to the
block.

Dependencies

To enable this port, set Controller parameters Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I*Ts — Integral gain multiplied by sample time
scalar | vector

Integral gain multiplied by the controller sample time, provided from a source external to the block.
External gain input is useful, for example, when you want to map a different PID parameterization to
the PID gains of the block. You can also use external gain input to implement gain-scheduled PID
control. In gain-scheduled control, you determine the PID coefficients by logic or other calculations in
your model and feed them to the block.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you supply it to this port.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Dependencies

To enable this port, set Controller parameters Source to external, set Controller to a controller
type that has integral action, and enable the Use I*Ts parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

I — Integral gain
scalar | vector

Integral gain, provided from a source external to the block. External gain input is useful, for example,
when you want to map a different PID parameterization to the PID gains of the block. You can also
use external gain input to implement gain-scheduled PID control. In gain-scheduled control, you
determine the PID coefficients by logic or other calculations in your model and feed them to the
block.

When you supply gains externally, time variations in the integral gain are also integrated. This result
occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

1 Blocks

1-28

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D — Derivative gain
scalar | vector

Derivative gain, provided from a source external to the block. External gain input is useful, for
example, when you want to map a different PID parameterization to the PID gains of the block. You
can also use external gain input to implement gain-scheduled PID control. In gain-scheduled control,
you determine the PID coefficients by logic or other calculations in your model and feed them to the
block.

When you supply gains externally, time variations in the derivative gain are also differentiated. This
result occurs because of the way the PID gains are implemented within the block. For details, see the
Controller parameters Source parameter.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

N — Filter coefficient
scalar | vector

Derivative filter coefficient, provided from a source external to the block. External coefficient input is
useful, for example, when you want to map a different PID parameterization to the PID gains of the
block. You can also use the external input to implement gain-scheduled PID control. In gain-scheduled
control, you determine the PID coefficients by logic or other calculations in your model and feed them
to the block.

Dependencies

To enable this port, set Controller parameters Source to external, and set Controller to a
controller type that has a filtered derivative.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Reset — External reset trigger
scalar

Trigger to reset the integrator and filter to their initial conditions. The value of the External reset
parameter determines whether reset occurs on a rising signal, a falling signal, or a level signal. The
port icon indicates the selected trigger type. For example, the following illustration shows a PID block
with External reset set to level.

 PI Controller

1-29

When the trigger occurs, the block resets the integrator and filter to the initial conditions specified by
the Integrator Initial condition and Filter Initial condition parameters or the I0 and D0 ports.

Note To be compliant with the Motor Industry Software Reliability Association (MISRA®) software
standard, your model must use Boolean signals to drive the external reset ports of the PID controller
block.

Dependencies

To enable this port, set External reset to any value other than none.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point | Boolean

I0 — Integrator initial condition
scalar | vector

Integrator initial condition, provided from a source external to the block.
Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has integral action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

D0 — Filter initial condition
scalar | vector

Initial condition of the derivative filter, provided from a source external to the block.
Dependencies

To enable this port, set Initial conditions Source to external, and set Controller to a controller
type that has derivative action.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

up — Output saturation upper limit
scalar | vector

Upper limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions exceeds the value provided at this port, the block
output is held at that value.
Dependencies

To enable this port, select Limit output and set the output saturation Source to external.

1 Blocks

1-30

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

lo — Output saturation lower limit
scalar | vector

Lower limit of the block output, provided from a source external to the block. If the weighted sum of
the proportional, integral, and derivative actions goes below the value provided at this port, the block
output is held at that value.

Dependencies

To enable this port, select Limit output and set the output saturation Source to external.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TR — Tracking signal
scalar | vector

Signal for controller output to track. When signal tracking is active, the difference between the
tracking signal and the block output is fed back to the integrator input. Signal tracking is useful for
implementing bumpless control transfer in systems that switch between two controllers. It can also
be useful to prevent block windup in multiloop control systems. For more information, see the Enable
tracking mode parameter.

Dependencies

To enable this port, select the Enable tracking mode parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

TDTI — Discrete-integrator time
scalar

Discrete-integrator time, provided as a scalar to the block. You can use your own value of discrete-
time integrator sample time that defines the rate at which the block is going to be run either in
Simulink or on external hardware. The value of the discrete-time integrator time should match the
average sampling rate of the external interrupts, when the block is used inside a conditionally-
executed subsystem.

In other words, you can specify Ts for any of the integrator methods below such that the value
matches the average sampling rate of the external interrupts. In discrete time, the derivative term of
the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the integrator method you specify with this parameter.

 PI Controller

1-31

Forward Euler

α(z) =
Ts

z − 1 .
Backward Euler

α(z) =
Tsz

z − 1 .
Trapezoidal

α(z) =
Ts
2

z + 1
z − 1 .

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page. For more information on conditionally executed subsystems, see “Conditionally
Executed Subsystems Overview”.

1 Blocks

1-32

Dependencies

To enable this port, set Time Domain to Discrete-time and select the PID Controller is inside a
conditionally executed subsystem option.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output

Port_1(y) — Controller output
scalar | vector

Controller output, generally based on a sum of the input signal, the integral of the input signal, and
the derivative of the input signal, weighted by the proportional, integral, and derivative gain
parameters. A first-order pole filters the derivative action. Which terms are present in the controller
signal depends on what you select for the Controller parameter. The base controller transfer
function for the current settings is displayed in the Compensator formula section of the block
parameters and under the mask. Other parameters modify the block output, such as saturation limits
specified by the Upper Limit and Lower Limit saturation parameters.

The controller output is a vector signal when any of the inputs is a vector signal. In that case, the
block acts as N independent PID controllers, where N is the number of signals in the input vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

Parameters
Controller — Controller type
PI (default) | PID | PD | P | I

Specify which of the proportional, integral, and derivative terms are in the controller.

PID
Proportional, integral, and derivative action.

PI
Proportional and integral action only.

PD
Proportional and derivative action only.

P
Proportional action only.

I
Integral action only.

Tip The controller transfer function for the current setting is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller

 PI Controller

1-33

Type: string, character vector
Values: "PID", "PI", "PD", "P", "I"
Default: "PI"

Form — Controller structure
Parallel (default) | Ideal

Specify whether the controller structure is parallel or ideal.

Parallel
The controller output is the sum of the proportional, integral, and derivative actions, weighted
independently by P, I, and D, respectively. For example, for a continuous-time parallel-form PID
controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Ideal
The proportional gain P acts on the sum of all actions. For example, for a continuous-time ideal-
form PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .

For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine a(z) and b(z),
respectively.

Tip The controller transfer function for the current settings is displayed in the Compensator
formula section of the block parameters and under the mask.

Programmatic Use
Block Parameter: Controller
Type: string, character vector
Values: "Parallel", "Ideal"
Default: "Parallel"

Time domain — Specify discrete-time or continuous-time controller
Discrete-time (default) | Continuous-time

1 Blocks

1-34

When you select Discrete-time, it is recommended that you specify an explicit sample time for the
block. See the Sample time (-1 for inherited) parameter. Selecting Discrete-time also enables
the Integrator method, and Filter method parameters.

When the PID Controller block is in a model with synchronous state control (see the State Control
block), you cannot select Continuous-time.

Programmatic Use
Block Parameter: TimeDomain
Type: string, character vector
Values: "Continuous-time", "Discrete-time"
Default: "Discrete-time"

PID Controller is inside a conditionally executed subsystem — Enable the
discrete-integrator time port
off (default) | on

For discrete-time PID controllers, enable the discrete-time integrator port to use your own value of
discrete-time integrator sample time. To ensure proper integration, use the TDTI port to provide a
scalar value of Δt for accurate discrete-time integration.

Dependencies

To enable this parameter, set Time Domain to Discrete-time.

Programmatic Use
Block Parameter: UseExternalTs
Type: string, character vector
Values: "on", "off"
Default: "off"

Sample time (-1 for inherited) — Discrete interval between samples
–1 (default) | positive scalar

Specify a sample time by entering a positive scalar value, such as 0.1. The default discrete sample
time of –1 means that the block inherits its sample time from upstream blocks. However, it is
recommended that you set the controller sample time explicitly, especially if you expect the sample
time of upstream blocks to change. The effect of the controller coefficients P, I, D, and N depend on
the sample time. Thus, for a given set of coefficient values, changing the sample time changes the
performance of the controller.

See “Specify Sample Time” for more information.

To implement a continuous-time controller, set Time domain to Continuous-time.

Tip If you want to run the block with an externally specified or variable sample time, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time.

Dependencies

To enable this parameter, set Time domain to Discrete-time.

 PI Controller

1-35

Programmatic Use
Block Parameter: SampleTime
Type: scalar
Values: -1, positive scalar
Default: -1

Integrator method — Method for computing integral in discrete-time controller
Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the integral term of the controller transfer function is Iα(z), where α(z) depends on
the integrator method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .

This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

α(z) =
Tsz

z − 1 .

An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

Note For the BackwardEuler or Trapezoidal methods, you cannot generate HDL code for the
block if either:

• Limit output is selected and Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

1 Blocks

1-36

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and set Controller to a controller
type with integral action.

Programmatic Use
Block Parameter: IntegratorMethod
Type: string, character vector
Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Filter method — Method for computing derivative in discrete-time controller
Forward Euler (default) | Backward Euler | Trapezoidal

In discrete time, the derivative term of the controller transfer function is:

D N
1 + Nα(z) ,

where α(z) depends on the filter method you specify with this parameter.

Forward Euler
Forward rectangular (left-hand) approximation,

α(z) =
Ts

z − 1 .
This method is best for small sampling times, where the Nyquist limit is large compared to the
bandwidth of the controller. For larger sampling times, the Forward Euler method can result in
instability, even when discretizing a system that is stable in continuous time.

Backward Euler
Backward rectangular (right-hand) approximation,

 PI Controller

1-37

α(z) =
Tsz

z − 1 .
An advantage of the Backward Euler method is that discretizing a stable continuous-time
system using this method always yields a stable discrete-time result.

Trapezoidal
Bilinear approximation,

α(z) =
Ts
2

z + 1
z − 1 .

An advantage of the Trapezoidal method is that discretizing a stable continuous-time system
using this method always yields a stable discrete-time result. Of all available integration methods,
the Trapezoidal method yields the closest match between frequency-domain properties of the
discretized system and the corresponding continuous-time system.

Tip The controller formula for the current setting is displayed in the Compensator formula
section of the block parameters and under the mask.

For more information about discrete-time integration, see the Discrete-Time Integrator block
reference page.

Dependencies

To enable this parameter, set Time Domain to Discrete-time and enable Use filtered derivative.

Programmatic Use
Block Parameter: FilterMethod
Type: string, character vector

1 Blocks

1-38

Values: "Forward Euler", "Backward Euler", "Trapezoidal"
Default: "Forward Euler"

Main

Source — Source for controller gains and filter coefficient
external (default) | internal

Enabling external inputs for the parameters allows you to compute PID gains and filter coefficients
externally to the block and provide them to the block as signal inputs.

internal
Specify the controller gains and filter coefficient using the block parameters P, I (or I*Ts), D, and
N.

external
Specify the PID gains and filter coefficient externally using block inputs. An additional input port
appears on the block for each parameter that is required for the current controller type.

External gain input is useful, for example, when you want to map a different PID parameterization
to the PID gains of the block. You can also use external gain input to implement gain-scheduled
PID control. In gain-scheduled control, you determine the PID gains by logic or other calculations
in your model and feed them to the block.

When you supply gains externally, time variations in the integral and derivative gain values are
integrated and differentiated, respectively. This result occurs because in both continuous time
and discrete time, the gains are applied to the signal before integration or differentiation. For
example, for a continuous-time PID controller with external inputs, the integrator term is
implemented as shown in the following illustration.

Within the block, the input signal u is multiplied by the externally supplied integrator gain, I,
before integration. This implementation yields:

yi =∫uI dt .

Thus, the integrator gain is included in the integral. Similarly, in the derivative term of the block,
multiplication by the derivative gain precedes the differentiation, which causes the derivative
gain D to be differentiated.

Programmatic Use
Block Parameter: ControllerParametersSource
Type: string, character vector
Values: "internal", "external"
Default: "external"

Proportional (P) — Proportional gain
1 (default) | scalar | vector

 PI Controller

1-39

Specify a finite, real gain value for the proportional gain. When Controller form is:

• Parallel — Proportional action is independent of the integral and derivative actions. For
instance, for a continuous-time parallel PID controller, the transfer function is:

Cpar(s) = P + I 1
s + D Ns

s + N .

For a discrete-time parallel-form controller, the transfer function is:

Cpar(z) = P + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

• Ideal — The proportional gain multiples the integral and derivative terms. For instance, for a
continuous-time ideal PID controller, the transfer function is:

Cid(s) = P 1 + I 1
s + D Ns

s + N .

For a discrete-time ideal-form controller, the transfer function is:

Cid(z) = P 1 + Iα(z) + D N
1 + Nβ(z) ,

where the Integrator method and Filter method parameters determine α(z) and β(z),
respectively.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID, PD, PI, or P.

Programmatic Use
Block Parameter: P
Type: scalar, vector
Default: 1

Integral (I) — Integral gain
1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain.

Tunable: Yes

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to a type that has integral action.

Programmatic Use
Block Parameter: I
Type: scalar, vector

1 Blocks

1-40

Default: 1

Integral (I*Ts) — Integral gain multiplied by sample time
1 (default) | scalar | vector

Specify a finite, real gain value for the integral gain multiplied by the sample time.

Note PID tuning tools, such as the PID Tuner app and Closed-Loop PID Autotuner block, tune the
gain I but not I*Ts. Therefore, multiply the integral gain value you obtain from a tuning tool by the
sample time before you write it to this parameter.

When you use I*Ts instead of I, the block requires fewer calculations to perform integration. This
improves the execution time of the generated code.

Tunable: No
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, set
Controller to a type that has integral action, and enable the Use I*Ts parameter.
Programmatic Use
Block Parameter: I
Type: scalar, vector
Default: 1

Use I*Ts — Use integral gain multiplied by sample time
on (default) | off

For discrete-time controllers with integral action, the block takes the integral gain as an input and
multiplies it by the sample time internally as a part of performing the integration. You can enable this
parameter to specify integral gain multiplied by sample time as input (I*Ts) in place of the integral
gain (I). Doing so reduces the number of internal calculations and is useful when you want to improve
the execution time of your generated code.
Dependencies

To enable this parameter, set Controller to a controller type that has integral action.
Programmatic Use
Block Parameter: UseKiTs
Type: string, character vector
Values: "on", "off"
Default: "on"

Derivative (D) — Derivative gain
0 (default) | scalar | vector

Specify a finite, real gain value for the derivative gain.

Tunable: Yes
Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal, and
set Controller to PID or PD.

 PI Controller

1-41

Programmatic Use
Block Parameter: D
Type: scalar, vector
Default: 0

Use filtered derivative — Apply filter to derivative term
on (default) | off

For discrete-time PID controllers only, clear this option to replace the filtered derivative with an
unfiltered discrete-time differentiator. When you do so, the derivative term of the controller transfer
function becomes:

Dz − 1
zTs

.

For continuous-time PID controllers, the derivative term is always filtered.

Dependencies

To enable this parameter, set Time domain to Discrete-time, and set Controller to a type that
has derivative action.

Programmatic Use
Block Parameter: UseFilter
Type: string, character vector
Values: "on", "off"
Default: "on"

Filter coefficient (N) — Derivative filter coefficient
100 (default) | scalar | vector

Specify a finite, real gain value for the filter coefficient. The filter coefficient determines the pole
location of the filter in the derivative action of the block. The location of the filter pole depends on the
Time domain parameter.

• When Time domain is Continuous-time, the pole location is s = -N.
• When Time domain is Discrete-time, the pole location depends on the Filter method

parameter.

Filter Method Location of Filter Pole
Forward Euler zpole = 1 − NTs

Backward Euler zpole = 1
1 + NTs

Trapezoidal
zpole =

1 − NTs/2
1 + NTs/2

The block does not support N = Inf (ideal unfiltered derivative). When the Time domain is
Discrete-time, you can clear Use filtered derivative to remove the derivative filter.

Tunable: Yes

1 Blocks

1-42

Dependencies

To enable this parameter, in the Main tab, set the controller-parameters Source to internal and
set Controller to PID or PD.

Programmatic Use
Block Parameter: N
Type: scalar, vector
Default: 100

Select tuning method — Tool for automatic tuning of controller coefficients
Transfer Function Based (PID Tuner App) (default) | Frequency Response Based

If you have Simulink Control Design software, you can automatically tune the PID coefficients. To do
so, use this parameter to select a tuning tool, and click Tune.

Transfer Function Based (PID Tuner App)
Use PID Tuner, which lets you interactively tune PID coefficients while examining relevant
system responses to validate performance. By default, PID Tuner works with a linearization of
your plant model. For models that cannot be linearized, you can tune PID coefficients against a
plant model estimated from simulated or measured response data. For more information, see
“Introduction to Model-Based PID Tuning in Simulink” (Simulink Control Design).

Frequency Response Based
Use Frequency Response Based PID Tuner, which tunes PID controller coefficients based on
frequency-response estimation data obtained by simulation. This tuning approach is especially
useful for plants that are not linearizable or that linearize to zero. For more information, see
“Design PID Controller from Plant Frequency-Response Data” (Simulink Control Design).

Both of these tuning methods assume a single-loop control configuration. Simulink Control Design
software includes other tuning approaches that suit more complex configurations. For information
about other ways to tune a PID Controller block, see “Choose a Control Design Approach” (Simulink
Control Design).

Enable zero-crossing detection — Detect zero crossings on reset and on entering or
leaving a saturation state
on (default) | off

Zero-crossing detection can accurately locate signal discontinuities without resorting to excessively
small time steps that can lead to lengthy simulation times. If you select Limit output or activate
External reset in your PID Controller block, activating zero-crossing detection can reduce
computation time in your simulation. Selecting this parameter activates zero-crossing detection:

• At initial-state reset
• When entering an upper or lower saturation state
• When leaving an upper or lower saturation state

For more information about zero-crossing detection, see “Zero-Crossing Detection”.

Programmatic Use
Block Parameter: ZeroCross
Type: string, character vector
Values: "on", "off"
Default: "on"

 PI Controller

1-43

Initialization

Source — Source for integrator and derivative initial conditions
external (default) | internal

Simulink uses initial conditions to initialize the integrator and derivative-filter (or the unfiltered
derivative) output at the start of a simulation or at a specified trigger event. (See the External reset
parameter.) These initial conditions determine the initial block output. Use this parameter to select
how to supply the initial condition values to the block.

internal
Specify the initial conditions using the Integrator Initial condition and Filter Initial
condition parameters. If Use filtered derivative is not selected, use the Differentiator
parameter to specify the initial condition for the unfiltered differentiator instead of a filter initial
condition.

external
Specify the initial conditions externally using block inputs. Additional input ports Io and Do
appear on the block. If Use filtered derivative is not selected, supply the initial condition for the
unfiltered differentiator at Do instead of a filter initial condition.

Programmatic Use
Block Parameter: InitialConditionSource
Type: string, character vector
Values: "internal", "external"
Default: "external"

Integrator — Integrator initial condition
0 (default) | scalar | vector

Simulink uses the integrator initial condition to initialize the integrator at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The integrator initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and set Controller to a
type that has integral action.

Programmatic Use
Block Parameter: InitialConditionForIntegrator
Type: scalar, vector
Default: 0

Filter — Filter initial condition
0 (default) | scalar | vector

Simulink uses the filter initial condition to initialize the derivative filter at the start of a simulation or
at a specified trigger event (see External reset). The integrator initial condition and the filter initial
condition determine the initial output of the PID controller block.

The filter initial condition cannot be NaN or Inf.

1 Blocks

1-44

Dependencies

To use this parameter, in the Initialization tab, set Source to internal, and use a controller that
has a derivative filter.

Programmatic Use
Block Parameter: InitialConditionForFilter
Type: scalar, vector
Default: 0

Differentiator — Initial condition for unfiltered derivative
0 (default) | scalar | vector

When you use an unfiltered derivative, Simulink uses this parameter to initialize the differentiator at
the start of a simulation or at a specified trigger event (see External reset). The integrator initial
condition and the derivative initial condition determine the initial output of the PID controller block.

The derivative initial condition cannot be NaN or Inf.

Dependencies

To use this parameter, set Time domain to Discrete-time, clear the Use filtered derivative
check box, and in the Initialization tab, set Source to internal.

Programmatic Use
Block Parameter: DifferentiatorICPrevScaledInput
Type: scalar, vector
Default: 0

Initial condition setting — Location at which initial condition is applied
Auto (default) | Output

Use this parameter to specify whether to apply the Integrator Initial condition and Filter Initial
condition parameter to the corresponding block state or output. You can change this parameter at
the command line only, using set_param to set the InitialConditionSetting parameter of the
block.

Auto
Use this option in all situations except when the block is in a triggered subsystem or a function-
call subsystem and simplified initialization mode is enabled.

Output
Use this option when the block is in a triggered subsystem or a function-call subsystem and
simplified initialization mode is enabled.

For more information about the Initial condition setting parameter, see the Discrete-Time
Integrator block.

This parameter is only accessible through programmatic use.

Programmatic Use
Block Parameter: InitialConditionSetting
Type: string, character vector
Values: "Auto", "Output"
Default: "Auto"

 PI Controller

1-45

External reset — Trigger for resetting integrator and filter values
level (default) | none | rising | falling | either

Specify the trigger condition that causes the block to reset the integrator and filter to initial
conditions. (If Use filtered derivative is not selected, the trigger resets the integrator and
differentiator to initial conditions.) Selecting any option other than none enables the Reset port on
the block for the external reset signal.

none
The integrator and filter (or differentiator) outputs are set to initial conditions at the beginning of
simulation, and are not reset during simulation.

rising
Reset the outputs when the reset signal has a rising edge.

falling
Reset the outputs when the reset signal has a falling edge.

either
Reset the outputs when the reset signal either rises or falls.

level
Reset the outputs when the reset signal either:

• Is nonzero at the current time step
• Changes from nonzero at the previous time step to zero at the current time step

This option holds the outputs to the initial conditions while the reset signal is nonzero.

Dependencies

To enable this parameter, set Controller to a type that has derivative or integral action.
Programmatic Use
Block Parameter: ExternalReset
Type: string, character vector
Values: "none", "rising", "falling", "either", "level"
Default: "level"

Ignore reset when linearizing — Force linearization to ignore reset
off (default) | on

Select to force Simulink and Simulink Control Design linearization commands to ignore any reset
mechanism specified in the External reset parameter. Ignoring reset states allows you to linearize a
model around an operating point even if that operating point causes the block to reset.
Programmatic Use
Block Parameter: IgnoreLimit
Type: string, character vector
Values: "off", "on"
Default: "off"

Enable tracking mode — Activate signal tracking
off (default) | on

Signal tracking lets the block output follow a tracking signal that you provide at the TR port. When
signal tracking is active, the difference between the tracking signal and the block output is fed back

1 Blocks

1-46

to the integrator input with a gain Kt, specified by the Tracking gain (Kt) parameter. Signal
tracking has several applications, including bumpless control transfer and avoiding windup in
multiloop control structures.
Bumpless control transfer

Use signal tracking to achieve bumpless control transfer in systems that switch between two
controllers. Suppose you want to transfer control between a PID controller and another controller. To
do so, connecting the controller output to the TR input as shown in the following illustration.

For more information, see “Bumpless Control Transfer”.
Multiloop control

Use signal tracking to prevent block windup in multiloop control approaches, as in the following
model.

The Inner Loop subsystem contains the blocks shown in the following diagram.

Because the PID controller tracks the output of the inner loop, its output never exceeds the saturated
inner-loop output. For more details, see “Prevent Block Windup in Multiloop Control”.

 PI Controller

1-47

Dependencies

To enable this parameter, set Controller to a type that has integral action.
Programmatic Use
Block Parameter: TrackingMode
Type: string, character vector
Values: "off", "on"
Default: "off"

Tracking coefficient (Kt) — Gain of signal-tracking feedback loop
1 (default) | scalar

When you select Enable tracking mode, the difference between the signal TR and the block output
is fed back to the integrator input with a gain Kt. Use this parameter to specify the gain in that
feedback loop.
Dependencies

To enable this parameter, select Enable tracking mode.
Programmatic Use
Block Parameter: Kt
Type: scalar
Default: 1

Saturation

Output saturation

Limit Output — Limit block output to specified saturation values
on (default) | off

Activating this option limits the block output, so that you do not need a separate Saturation block
after the controller. It also allows you to activate the anti-windup mechanism built into the block (see
the Anti-windup method parameter). Specify the output saturation limits using the Lower limit and
Upper limit parameters. You can also specify the saturation limits externally as block input ports.
Programmatic Use
Block Parameter: LimitOutput
Type: string, character vector
Values: "off", "on"
Default: "on"

Source — Source for output saturation limits
internal (default) | external

Use this parameter to specify how to supply the upper and lower saturation limits of the block output.

internal
Specify the output saturation limits using the Upper limit and Lower limit parameters.

external
Specify the output saturation limits externally using block input ports. The additional input ports
up and lo appear on the block. You can use the input ports to implement the upper and lower
output saturation limits determined by logic or other calculations in the Simulink model and
passed to the block.

1 Blocks

1-48

Programmatic Use
Block Parameter: SatLimitsSource
Type: string, character vector
Values: "internal", "external"
Default: "internal"

Upper limit — Upper saturation limit for block output
1 (default) | scalar

Specify the upper limit for the block output. The block output is held at the Upper saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions exceeds that value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: UpperSaturationLimit
Type: scalar
Default: 1

Lower limit — Lower saturation limit for block output
–1 (default) | scalar

Specify the lower limit for the block output. The block output is held at the Lower saturation limit
whenever the weighted sum of the proportional, integral, and derivative actions goes below that
value.

Dependencies

To enable this parameter, select Limit output.
Programmatic Use
Block Parameter: LowerSaturationLimit
Type: scalar
Default: –1

Ignore saturation when linearizing — Force linearization to ignore output limits
on (default) | off

Force Simulink and Simulink Control Design linearization commands to ignore block output limits
specified in the Upper limit and Lower limit parameters. Ignoring output limits allows you to
linearize a model around an operating point even if that operating point causes the block to exceed
the output limits.

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: LinearizeAsGain
Type: string, character vector
Values: "off", "on"
Default: "on"

Anti-windup method — Integrator anti-windup method
clamping (default) | none | back-calculation

 PI Controller

1-49

When you select Limit output and the weighted sum of the controller components exceeds the
specified output limits, the block output holds at the specified limit. However, the integrator output
can continue to grow (integrator windup), increasing the difference between the block output and the
sum of the block components. In other words, the internal signals in the block can be unbounded
even if the output appears bounded by saturation limits. Without a mechanism to prevent integrator
windup, two results are possible:

• If the sign of the input signal never changes, the integrator continues to integrate until it
overflows. The overflow value is the maximum or minimum value for the data type of the
integrator output.

• If the sign of the input signal changes once the weighted sum has grown beyond the output limits,
it can take a long time to unwind the integrator and return the weighted sum within the block
saturation limit.

In either case, controller performance can suffer. To combat the effects of windup without an anti-
windup mechanism, it may be necessary to detune the controller (for example, by reducing the
controller gains), resulting in a sluggish controller. To avoid this problem, activate an anti-windup
mechanism using this parameter.

none
Do not use an anti-windup mechanism.

back-calculation
Unwind the integrator when the block output saturates by feeding back to the integrator the
difference between the saturated and unsaturated control signal. The following diagram
represents the back-calculation feedback circuit for a continuous-time controller. To see the
actual feedback circuit for your controller configuration, right-click on the block and select Mask
> Look Under Mask.

Use the Back-calculation coefficient (Kb) parameter to specify the gain of the anti-windup
feedback circuit. It is usually satisfactory to set Kb = I, or for controllers with derivative action,
Kb = sqrt(I*D). Back-calculation can be effective for plants with relatively large dead time [1].

clamping
Integration stops when the sum of the block components exceeds the output limits and the
integrator output and block input have the same sign. Integration resumes when the sum of the

1 Blocks

1-50

block components exceeds the output limits and the integrator output and block input have
opposite sign. Clamping is sometimes referred to as conditional integration.

Clamping can be useful for plants with relatively small dead times, but can yield a poor transient
response for large dead times [1].

Dependencies

To enable this parameter, select the Limit output parameter.

Programmatic Use
Block Parameter: AntiWindupMode
Type: string, character vector
Values: "none", "back-calculation", "clamping"
Default: "clamping"

Back-calculation coefficient (Kb) — Gain coefficient of anti-windup feedback loop
1 (default) | scalar

The back-calculation anti-windup method unwinds the integrator when the block output
saturates. It does so by feeding back to the integrator the difference between the saturated and
unsaturated control signal. Use the Back-calculation coefficient (Kb) parameter to specify the
gain of the anti-windup feedback circuit. For more information, see the Anti-windup method
parameter.

Dependencies

To enable this parameter, select the Limit output parameter, and set the Anti-windup method
parameter to back-calculation.

Programmatic Use
Block Parameter: Kb
Type: scalar
Default: 1

Integrator saturation

Limit Output — Limit integrator output to specified saturation limits

off (default) | on

Enable this parameter to limit the integrator output to be within a specified range. When the
integrator output reaches the limits, the integral action turns off to prevent integral windup. Specify
the saturation limits using the Lower limit and Upper limit parameters.

Dependencies

To enable this parameter, set Controller to a controller type that has integral action.

Programmatic Use
Block Parameter: LimitIntegratorOutput
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper limit — Upper saturation limit for integrator

 PI Controller

1-51

Inf (default) | scalar

Specify the upper limit for the integrator output. The integrator output is held at this value whenever
it would otherwise exceed this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use
Block Parameter: UpperIntegratorSaturationLimit
Type: scalar
Default: Inf

Lower limit — Lower saturation limit for integrator

-Inf (default) | scalar

Specify the lower limit for the integrator output. The integrator output is held at this value whenever
it would otherwise go below this value.

Dependencies

To enable this parameter, under Integrator saturation, select Limit output.

Programmatic Use
Block Parameter: LowerIntegratorSaturationLimit
Type: scalar
Default: -Inf

Data Types

The parameters in this tab are primarily of use in fixed-point code generation using Fixed-Point
Designer™. They define how numeric quantities associated with the block are stored and processed
when you generate code.

If you need to configure data types for fixed-point code generation, click Open Fixed-Point Tool and
use that tool to configure the rest of the parameters in the tab. For information about using Fixed-
Point Tool, see “Autoscaling Data Objects Using the Fixed-Point Tool” (Fixed-Point Designer).

After you use Fixed-Point Tool, you can use the parameters in this tab to make adjustments to fixed-
point data-type settings if necessary. For each quantity associated with the block, you can specify:

• Floating-point or fixed-point data type, including whether the data type is inherited from upstream
values in the block.

• The minimum and maximum values for the quantity, which determine how the quantity is scaled
for fixed-point representation.

For assistance in selecting appropriate values, click to open the Data Type Assistant for the
corresponding quantity. For more information, see “Specify Data Types Using Data Type Assistant”.

1 Blocks

1-52

The specific quantities listed in the Data Types tab vary depending on how you configure the PID
controller block. In general, you can configure data types for the following types of quantities:

• Product output — Stores the result of a multiplication carried out under the block mask. For
example, P product output stores the output of the gain block that multiplies the block input
with the proportional gain P.

• Parameter — Stores the value of a numeric block parameter, such as P, I, or D.
• Block output — Stores the output of a block that resides under the PID controller block mask. For

example, use Integrator output to specify the data type of the output of the block called
Integrator. This block resides under the mask in the Integrator subsystem, and computes
integrator term of the controller action.

• Accumulator — Stores values associated with a sum block. For example, SumI2 Accumulator
sets the data type of the accumulator associated with the sum block SumI2. This block resides
under the mask in the Back Calculation subsystem of the Anti-Windup subsystem.

In general, you can find the block associated with any listed parameter by looking under the PID
Controller block mask and examining its subsystems. You can also use the Model Explorer to search
under the mask for the listed parameter name, such as SumI2. (See Model Explorer.)

Matching Input and Internal Data Types

By default, the data types for product output and block output are set to Inherit: Same as first
input. With this setting, the block uses the data type of its first input signal for these signals.

When data type is set to Inherit: Inherit via internal rule, Simulink chooses data types to
balance numerical accuracy, performance, and generated code size, while accounting for the
properties of the embedded target hardware.

Under some conditions, incompatibility can occur between data types within the block. For instance,
in continuous time, the Integrator block under the mask can accept only signals of type double. If
the block input signal is a type that cannot be converted to double, such as uint16, the internal
rules for type inheritance generate an error when you generate code.

 PI Controller

1-53

To avoid such errors, you can use the Data Types settings to force a data type conversion. For
instance, you can explicitly set P product output, I product output, and D product output to
double, ensuring that the signals reaching the continuous-time integrators are of type double.

In general, it is not recommended to use the block in continuous time for code generation
applications. However, similar data type errors can occur in discrete time, if you explicitly set some
values to data types that are incompatible with downstream signal constraints within the block. In
such cases, use the Data Types settings to ensure that all data types are internally compatible.

Fixed-Point Operational Parameters

Integer rounding mode — Rounding mode for fixed-point operations
Simplest (default) | Floor | Ceiling | Convergent | Nearest | Round | Zero

Specify the rounding mode for fixed-point operations. For more information, see “Rounding” (Fixed-
Point Designer).

Block parameters always round to the nearest representable value. To control the rounding of a block
parameter, enter an expression using a MATLAB® rounding function into the mask field.

Programmatic Use
Block Parameter: RndMeth
Type: character vector
Values: 'Ceiling' | 'Convergent' | 'Floor' | 'Nearest' | 'Round' | 'Simplest' | 'Zero'
Default: 'Simplest'

Saturate on integer overflow — Method of overflow action
off (default) | on

Specify whether overflows saturate or wrap.

• off — Overflows wrap to the appropriate value that the data type can represent.

For example, the number 130 does not fit in a signed 8-bit integer and wraps to -126.
• on — Overflows saturate to either the minimum or maximum value that the data type can

represent.

For example, an overflow associated with a signed 8-bit integer can saturate to -128 or 127.

Tip

• Consider selecting this check box when your model has a possible overflow and you want explicit
saturation protection in the generated code.

• Consider clearing this check box when you want to optimize efficiency of your generated code.

Clearing this check box also helps you to avoid overspecifying how a block handles out-of-range
signals. For more information, see “Troubleshoot Signal Range Errors”.

• When you select this check box, saturation applies to every internal operation on the block, not
just the output or result.

• In general, the code generation process can detect when overflow is not possible. In this case, the
code generator does not produce saturation code.

1 Blocks

1-54

Programmatic Use
Block Parameter: SaturateOnIntegerOverflow
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Lock data type settings against changes by the fixed-point tools — Prevent
fixed-point tools from overriding data types
off (default) | on

Select this parameter to prevent the fixed-point tools from overriding the data types you specify on
this block. For more information, see “Lock the Output Data Type Setting” (Fixed-Point Designer).

Programmatic Use
Block Parameter: LockScale
Type: character vector
Values: 'off' | 'on'
Default: 'off'

State Attributes

The parameters in this tab are primarily of use in code generation.

State name (e.g., 'position') — Name for continuous-time filter and integrator states
'' (default) | character vector

Assign a unique name to the state associated with the integrator or the filter, for continuous-time PID
controllers. (For information about state names in a discrete-time PID controller, see the State name
parameter.) The state name is used, for example:

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters.

Dependencies

To enable this parameter, set Time domain to Continuous-time.

Programmatic Use
Parameter: IntegratorContinuousStateAttributes, FilterContinuousStateAttributes
Type: character vector
Default: ''

State name — Names for discrete-time filter and integrator states
empty string (default) | string | character vector

Assign a unique name to the state associated with the integrator or the filter, for discrete-time PID
controllers. (For information about state names in a continuous-time PID controller, see the State
name (e.g., 'position') parameter.)

A valid state name begins with an alphabetic or underscore character, followed by alphanumeric or
underscore characters. The state name is used, for example:

 PI Controller

1-55

• For the corresponding variable in generated code
• As part of the storage name when logging states during simulation
• For the corresponding state in a linear model obtain by linearizing the block

For more information about the use of state names in code generation, see “C Code Generation
Configuration for Model Interface Elements” (Simulink Coder).

Dependencies

To enable this parameter, set Time domain to Discrete-time.

Programmatic Use
Parameter: IntegratorStateIdentifier, FilterStateIdentifier
Type: string, character vector
Default: ""

State name must resolve to Simulink signal object — Require that state name
resolve to a signal object
off (default) | on

Select this parameter to require that the discrete-time integrator or filter state name resolves to a
Simulink signal object.

Dependencies

To enable this parameter for the discrete-time integrator or filter state:

1 Set Time domain to Discrete-time.
2 Specify a value for the integrator or filter State name.
3 Set the model configuration parameter Signal resolution to a value other than None.

Programmatic Use
Block Parameter: IntegratorStateMustResolveToSignalObject,
FilterStateMustResolveToSignalObject
Type: string, character vector
Values: "off", "on"
Default: "off"

Block Characteristics
Data Types double | fixed point | integer | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Version History
Introduced in R2022a

1 Blocks

1-56

References
[1] Visioli, A., "Modified Anti-Windup Scheme for PID Controllers," IEE Proceedings - Control Theory

and Applications, Vol. 150, Number 1, January 2003

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

For discrete-time PID controllers (Time domain set to Discrete-time):

• Depends on absolute time when placed inside a triggered subsystem hierarchy.
• Generated code relies on memcpy or memset functions (string.h) under certain conditions.

For continuous-time PID controllers (Time domain set to Continuous-time):

• Consider using “Model Discretizer” to map continuous-time blocks to discrete equivalents that
support code generation. To access Model Discretizer, from your model, in the Apps tab, under
Control Systems, click Model Discretizer.

• Not recommended for production code.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
HDL Architecture

This block has a single, default HDL architecture.
HDL Block Properties

ConstrainedOutputPi
peline

Number of registers to place at the outputs by moving existing delays
within your design. Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “InputPipeline” (HDL
Coder).

OutputPipeline Number of output pipeline stages to insert in the generated code.
Distributed pipelining and constrained output pipelining can move these
registers. The default is 0. For more details, see “OutputPipeline” (HDL
Coder).

Restrictions

• HDL code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

• If the Integrator method is set to BackwardEuler or Trapezoidal, you cannot generate HDL
code for the block under either of the following conditions:

 PI Controller

1-57

• Limit output is selected and the Anti-Windup Method is anything other than none.
• Enable tracking mode is selected.

• To generate HDL code:

• Use a discrete-time PID controller. On the Time domain section, specify Discrete-time.
• Leave the Use filtered derivative check box selected.
• Specify the initial conditions of the filter and integrator internally. On the Initialization tab,

specify Source as internal.

You can specify the filter coefficients internally and externally for HDL code generation. On the
Main tab, for Source, you can use internal or external.

• Set External reset to none.
• When you use double inputs, do not set Anti-windup Method to clamping.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

Fixed-point code generation is supported for discrete-time PID controllers only (Time domain set to
Discrete-time).

See Also
Field Oriented Control Autotuner

1 Blocks

1-58

3-Phase Sine Voltage Generator
Generate balanced three-phase sinusoidal signals
Library: Motor Control Blockset / Controls / Math Transforms

Description
The 3-Phase Sine Voltage Generator block generates balanced, three-phase sinusoidal signals using
signal amplitude and position inputs.

The block uses the lookup table approach. This approach results in optimized code-execution when
used with the model settings and configuration adopted by the examples shipped in Motor Control
Blockset. You can specify the number of lookup table points in the Number of data points for
lookup table parameter.

The following image shows a plot of position input and three-phase sinusoidal output signals against
time.

 3-Phase Sine Voltage Generator

1-59

Equations

The following equations describe how the block computes balanced, three-phase sinusoidal signals.

• Va = A × sinωt
• Vb = A × sin ωt − 2π

3
• Vc = A × sin ωt − 4π

3

where:

• A is the reference voltage amplitude (volts).
• ω is the frequency of the reference voltage position input signal (θe) (radians/ sec).
• t is the time (seconds).

Ports
Input

A — Reference voltage amplitude
scalar

Maximum amplitude of the reference voltage signal.
Data Types: single | double | fixed point

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal.
Data Types: single | double | fixed point

Output

Va — a-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the a-axis of the abc reference frame.
Data Types: single | double | fixed point

Vb — b-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the b-axis of the abc reference frame.
Data Types: single | double | fixed point

Vc — c-axis component of balanced, three-phase voltage
scalar

Balanced, three-phase voltage signal component along the c-axis of the abc reference frame.
Data Types: single | double | fixed point

1 Blocks

1-60

Parameters
Theta units — Unit of θe
Per-unit (default) | Radians | Degrees

Unit of the reference voltage position that you provide as input.

Number of data points for lookup table — Size of lookup table
1024 (default) | scalar

Size of the lookup table.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 3-Phase Sine Voltage Generator

1-61

atan2
Compute four-quadrant arctangent
Library: Motor Control Blockset / Controls / Math Transforms

Description
The atan2 block performs the four-quadrant arctangent on two real numbers.

Equations

This equation describes how the block computes the four-quadrant arctangent (θ).

Theta = atan2(A, B) =

arctan A
B if B>0,

arctan A
B + π if B<0 and A ≥ 0,

arctan A
B − π if B<0 and A<0,

+ π
2 if B=0 and A>0,

−π
2 if B=0 and A<0,

undef ined if B=0 and A=0.

where:

−π < Theta ≤ π (Radians)

Ports
Input

A — y-coordinate value (real number)
scalar

Real number on the y-axis that you provide as input to the block.
Data Types: single | double | fixed point

B — x-coordinate value (real number)
scalar

Real number on the x-axis that you provide as input to the block.
Data Types: single | double | fixed point

1 Blocks

1-62

Output

θ — Angle represented by arctangent
scalar

Angle represented by arctangent. This is the angle made by a vector from the origin to a specified
point (x,y) with the positive x-axis.
Data Types: single | double | fixed point

The following figure shows the representation of input values A, B, and arctangent on the x-y
coordinate plane.

Parameters
Output unit — Unit of output values
Radians (default) | PerUnit

Unit of the output values.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 atan2

1-63

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-64

Clarke Transform
Implement ab to αβ transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Clarke Transform block computes the Clarke transformation of balanced three-phase components
in the abc reference frame and outputs the balanced two-phase orthogonal components in the
stationary αβ reference frame.

The block accepts two signals out of the three phases (abc), automatically calculates the third signal,
and outputs the corresponding components in the αβ reference frame.

For example, the block accepts a and b input values where the phase-a axis aligns with the α-axis.

• This figure shows the direction of the magnetic axes of the stator windings in the abc reference
frame and the stationary αβ reference frame.

• This figure shows the equivalent α and β components in the stationary αβ reference frame.

 Clarke Transform

1-65

• The time-response of the individual components of equivalent balanced abc and αβ systems.

Equations

The following equation describes the Clarke transform computation:

1 Blocks

1-66

fα
fβ
f0

= 2
3 ×

1 − 1
2 − 1

2

0 3
2 − 3

2
1
2 1

2 1
2

fa
fb
fc

For balanced systems like motors, the zero sequence component calculation is always zero. For
example, the currents of the motor can be represented as,

ia + ib + ic = 0

Therefore, you can use only two current sensors in three-phase motor drives, where you can calculate
the third phase as,

ic = − (ia + ib)

By using these equations, the block implements the Clarke transform as,

fα
fβ

=
1 0
1
3 2

3

fa
fb

where:

• fa, fb, and fc are the balanced three-phase components in the abc reference frame.
• fα and fβ are the balanced two-phase orthogonal components in the stationary αβ reference frame.
• f0 is the zero component in the stationary αβ reference frame.

Ports
Input

a — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

b — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

Output

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

 Clarke Transform

1-67

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Clarke Transform | Park Transform

1 Blocks

1-68

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Clarke Transform

1-69

Inverse Clarke Transform
Implement αβ to abc transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Inverse Clarke Transform block computes the Inverse Clarke transformation of balanced, two-
phase orthogonal components in the stationary αβ reference frame. It outputs the balanced, three-
phase components in the stationary abc reference frame.

The block accepts the α-β axis components as inputs and outputs the corresponding three-phase
signals, where the phase-a axis aligns with the α-axis.

• The α and β input components in the αβ reference frame.

• The direction of the equivalent a, b, and c output components in the abc reference frame and the
αβ reference frame.

1 Blocks

1-70

• The time-response of the individual components of equivalent balanced αβ and abc systems.

Equations

The following equation describes the Inverse Clarke transform computation:

fa
fb
fc

=

1 0 1

− 1
2

3
2 1

− 1
2 −

3
2 1

fα
fβ
f0

For balanced systems like motors, the zero sequence component calculation is always zero:

ia + ib + ic = 0

Therefore, you can use only two current sensors in three-phase motor drives, where you can calculate
the third phase as,

ic = − (ia + ib)

By using these equations, the block implements the Inverse Clarke transform as,

 Inverse Clarke Transform

1-71

fa
fb
fc

=

1 0

−1
2

3
2

−1
2 − 3

2

fα
fβ

where:

• fα and fβ are the balanced two-phase orthogonal components in the stationary αβ reference frame.

• f0 is the zero component in the stationary αβ reference frame.

• fa, fb, and fc are the balanced three-phase components in the abc reference frame.

Ports
Input

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Output

a — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

b — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

c — Phase component
scalar

Component of the three-phase system in the abc reference frame.
Data Types: single | double | fixed point

1 Blocks

1-72

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Clarke Transform

 Inverse Clarke Transform

1-73

Inverse Park Transform
Implement dq to αβ transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Inverse Park Transform block computes the inverse Park transformation of the orthogonal direct
and quadrature axes components in the rotating dq reference frame. You can configure the block to
align either the d- or q-axis with the α-axis at time t = 0.

The block accepts the following inputs:

• d-q axes components in the rotating reference frame.
• Sine and cosine values of the corresponding angles of transformation.

It outputs the two-phase orthogonal components in the stationary αβ reference frame.

The figures show a rotating dq reference frame and the α-β axes components in an αβ reference
frame for when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

1 Blocks

1-74

In both cases, the angle θ = ωt, where:

• θ is the angle between the α- and d-axes for the d-axis alignment or the angle between the α-
and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed of the d-q reference frame.
• t is the time, in seconds, from the initial alignment.

The figures show the time-response of the individual components of the αβ and dq reference frames
when:

• The d-axis aligns with the α-axis.

 Inverse Park Transform

1-75

• The q-axis aligns with the α-axis.

1 Blocks

1-76

Equations

The following equations describe how the block implements inverse Park transformation.

• When the d-axis aligns with the α-axis.

fα
fβ

=
cosθ −sinθ
sinθ cosθ

fd
fq

• When the q-axis aligns with the α-axis.

fα
fβ

=
sinθ cosθ
−cosθ sinθ

fd
fq

where:

• fd and fq are the direct and quadrature axis orthogonal components in the rotating dq reference
frame.

• fα and fβ are the two-phase orthogonal components in the stationary αβ reference frame.

 Inverse Park Transform

1-77

Ports
Input

d — Axis component
scalar

Direct axis component, d, in the rotating dq reference frame.
Data Types: single | double | fixed point

q — Axis component
scalar

Quadrature axis component, q, in the rotating dq reference frame.
Data Types: single | double | fixed point

sin θe — Sine value of rotational angle
scalar

Sine value of the angle of transformation, θe. θe is the angle between the rotating reference frame and
the α-axis.
Data Types: single | double | fixed point

cos θe — Cosine value of rotational angle
scalar

Cosine value of the angle of transformation, θe. θe is the angle between the rotating reference frame
and the α-axis.
Data Types: single | double | fixed point

Output

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

1 Blocks

1-78

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Park Transform | PI Controller | DQ Limiter | ACIM Feed Forward Control | Space Vector Generator |
Sine-Cosine Lookup | PMSM Feed Forward Control

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Inverse Park Transform

1-79

Park Transform
Implement αβ to dq transformation
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Park Transform block computes the Park transformation of two-phase orthogonal components in
a stationary αβ reference frame.

The block accepts the following inputs:

• α-β axes components in the stationary reference frame.
• Sine and cosine values of the corresponding angles of transformation.

It outputs orthogonal direct and quadrature axis components in the rotating dq reference frame. You
can configure the block to align either the d- or the q-axis with the α-axis at time t = 0.

The figures show the α-β axes components in an αβ reference frame and a rotating dq reference
frame for when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

1 Blocks

1-80

In both cases, the angle θ = ωt, where:

• θ is the angle between the α- and d-axes for the d-axis alignment or the angle between the α-
and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed of the d-q reference frame.
• t is the time, in seconds, from the initial alignment.

The figures show the time-response of the individual components of the αβ and dq reference frames
when:

• The d-axis aligns with the α-axis.

 Park Transform

1-81

• The q-axis aligns with the α-axis.

1 Blocks

1-82

Equations

The following equations describe how the block implements Park transformation.

• When the d-axis aligns with the α-axis.

fd
fq

=
cosθ sinθ
−sinθ cosθ

fα
fβ

• When the q-axis aligns with the α-axis.

fd
fq

=
sinθ −cosθ
cosθ sinθ

fα
fβ

where:

• fα and fβ are the two-phase orthogonal components in the stationary αβ reference frame.
• fd and fq are the direct and quadrature axis orthogonal components in the rotating dq reference

frame.

 Park Transform

1-83

Ports
Input

α — Axis component
scalar

Alpha-axis component, α, in the stationary αβ reference frame.
Data Types: single | double | fixed point

β — Axis component
scalar

Beta-axis component, β, in the stationary αβ reference frame.
Data Types: single | double | fixed point

sin θe — Sine value of rotational angle
scalar

Sine value of the angle of transformation, θe. θe is the angle between the rotating reference frame and
the α-axis.
Data Types: single | double | fixed point

cos θe — Cosine value of rotational angle
scalar

Cosine value of the angle of transformation, θe. θe is the angle between the rotating reference frame
and the α-axis.
Data Types: single | double | fixed point

Output

d — Axis component
scalar

Direct axis component, d, in the rotating dq reference frame.
Data Types: single | double | fixed point

q — Axis component
scalar

Quadrature axis component, q, in the rotating dq reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

1 Blocks

1-84

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Park Transform | Clarke Transform | Sine-Cosine Lookup | PI Controller | ACIM Feed Forward
Control | ACIM Torque Estimator | PMSM Feed Forward Control | PMSM Torque Estimator

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Park Transform

1-85

Sine-Cosine Lookup
Implement sine and cosine functions using lookup table approach
Library: Motor Control Blockset / Controls / Math Transforms

Description
The Sine-Cosine Lookup block implements sine and cosine functions using the specified position or
phase input signal.

The block uses the lookup table approach. This approach results in optimized code-execution when
used with the model settings and configuration adopted by the examples shipped in Motor Control
Blockset. You can specify the number of lookup table points in the Number of data points for
lookup table parameter.

This figure shows the input position and the generated sine and cosine output signals:

Ports
Input

θe — Reference voltage position
scalar

Position or phase value of the reference voltage signal specified as scalar in either per-unit, radians,
or degrees.
Data Types: single | double | fixed point

1 Blocks

1-86

Output

sin — Sine voltage waveform
scalar

Sine waveform output with a frequency that is identical to the position or phase signal (θe) frequency.
Data Types: single | double | fixed point

cos — Cosine voltage waveform
scalar

Cosine waveform output with a frequency that is identical to the position or phase signal (θe)
frequency.
Data Types: single | double | fixed point

Parameters
Theta units — Unit of θe
Per-unit (default) | Radians | Degrees

Unit of the input reference voltage position.

Number of data points for lookup table — Size of lookup table array
1024 (default) | scalar

Size of the lookup table array.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator | Park Transform | Inverse Park Transform | Mechanical to Electrical Position

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Sine-Cosine Lookup

1-87

PWM Reference Generator
Generate modulated signals from phase voltages
Library: Motor Control Blockset / Controls / Math Transforms

Description
The PWM Reference Generator block generates modulated voltage signals from the stator phase or
reference voltages.

The block accepts either the phase voltages (Vabc) or the stator reference voltages (Vαβ) described by
the α-β voltage components.

Use this block to perform sinusoidal PWM (SPWM) and space vector modulation (SVM) along with
these discrete pulse-width modulation (DPWM) methods that reduce switching losses:

Note For the following modulation methods the block supports only per-unit (PU) input signals. For
more information about the per-unit system, see “Per-Unit System”.

• 60 DPWM — 60 degree discontinuous PWM
• 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM
• 60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM
• 30 DPWM — 30 degree discontinuous PWM
• 120 DPWM — Positive DC component
• 120 DPWM — Negative DC component

For discontinuous PWM (DPWM), the block clamps the modulation wave to the positive or negative
DC rail for a total of 120 degrees during each fundamental period per phase. During each clamping
interval, the modulation discontinues.

The figure shows the sinusoidal PWM (SPWM) waveform.

1 Blocks

1-88

The figure shows the space vector modulation (SVM) waveform.

The figure shows a 60-degree DPWM waveform with two 60-degree clamped intervals per
fundamental period.

 PWM Reference Generator

1-89

The figure shows a 60-degree DPWM waveform with a positive 30-degree phase shift.

The figure shows a 60-degree DPWM waveform with a negative 30-degree phase shift.

1 Blocks

1-90

The figure shows a 30-degree DPWM waveform with four 30-degree clamped intervals per
fundamental period.

The figure shows a 120-degree DPWM waveform with positive DC clamping.

 PWM Reference Generator

1-91

The figure shows a 120-degree DPWM waveform with negative DC clamping.

Ports
Input

Vα — α-axis stator reference voltage component
scalar

Stator reference voltage component along α-axis of the αβ reference frame.

Dependencies

To enable this port, set Input type to Valphabeta.
Data Types: single | double | fixed point

1 Blocks

1-92

Vβ — β-axis stator reference voltage component
scalar

Stator reference voltage component along β-axis of the αβ reference frame.

Dependencies

To enable this port, set Input type to Valphabeta.
Data Types: single | double | fixed point

Va — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Vb — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Vc — Phase component
scalar

Component of the three-phase system in the abc reference frame.

Dependencies

To enable this port, set Input type to Vabc.
Data Types: single | double | fixed point

Output

Vao — a-axis stator reference voltage component
scalar

Stator reference voltage component along a-axis of the abc reference frame.
Data Types: single | double | fixed point

Vbo — b-axis stator reference voltage component
scalar

Stator reference voltage component along b-axis of the abc reference frame.
Data Types: single | double | fixed point

 PWM Reference Generator

1-93

Vco — c-axis stator reference voltage component
scalar

Stator reference voltage component along c-axis of the abc reference frame.
Data Types: single | double | fixed point

Parameters
Input type — Block input type
Valphabeta (default) | Vabc | Degrees

Type of three-phase stator voltage representation that the block uses as input. Select either the abc
or αβ reference frame.

Modulation method — Pulse-width modulation (PWM) methods
SVM: space vector modulation (default) | SPWM: sinusoidal PWM | 60 DPWM — 60 degree
discontinuous PWM | 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM |
60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM | 30 DPWM — 30
degree discontinuous PWM | 120 DPWM — positive DC component | 120 DPWM —
negative DC component

Pulse-width modulation (PWM) method that the block uses to modulate the input stator phase or
reference voltages.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

Supported Block Parameters

For HDL code generation with the PWM Reference Generator block, set the Modulation method to
SVM: space vector modulation or SPWM: sinusoidal PWM.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

1 Blocks

1-94

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Inverse Park Transform

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 PWM Reference Generator

1-95

Protection Relay
Implement protection relay with definite minimum time (DMT) trip characteristics
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Protection Relay block implements a protection relay for the hardware and the motor with
definite minimum time (DMT) trip characteristics using the reference limit, feedback, and reset input
signals. In the event of a fault, the block generates a latched fault signal that you can use to protect
the hardware and the motor. You can reset the fault latch using an external reset signal.

Ports
Input

Imax — Upper limit for current
scalar

Upper limit for current in the feedback loop, so as to provide overcurrent protection. The block
generates a latched fault signal when the current in the feedback loop (Ifb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overcurrent.
Data Types: single | double | fixed point

Ifb — Actual current in feedback loop
scalar

Actual current in the feedback loop at a given time.
Dependencies

To enable this port, set Select Protection to Overcurrent.
Data Types: single | double | fixed point

⍵m max — Rotor speed limit for overspeed protection
scalar

Speed limit of the rotor (in RPM). The block generates a latched fault signal when the rotor speed (⍵m
fb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overspeed.
Data Types: single | double | fixed point

1 Blocks

1-96

⍵m fb — Actual rotor speed
scalar

Actual rotor speed at a given time.
Dependencies

To enable this port, set Select Protection to Overspeed.
Data Types: single | double | fixed point

Vmax — Upper voltage limit for overvoltage protection
scalar

Upper limit for voltage across the feedback loop. The block generates a latched fault signal when the
voltage across the feedback loop (Vfb) exceeds this value.
Dependencies

To enable this port, set Select Protection to Overvoltage.
Data Types: single | double | fixed point

Vmin — Lower voltage limit for undervoltage protection
scalar

Lower limit for voltage across the feedback loop. The block generates a latched fault signal when the
voltage across the feedback loop (Vfb) is less than this value.
Dependencies

To enable this port, set Select Protection to Undervoltage.
Data Types: single | double | fixed point

Vfb — Actual voltage across feedback loop
scalar

Actual voltage across the feedback loop at a given time.
Dependencies

To enable this port, set Select Protection to either Overvoltage or Undervoltage.
Data Types: single | double | fixed point

Reset — External reset pulse
scalar

External pulse that resets the fault latch.
Data Types: single | double | fixed point

Output

y — Latched fault signal
scalar

Latched fault signal that the block generates during the overcurrent, overspeed, overvoltage, and
undervoltage conditions to protect the hardware and the motor.

 Protection Relay

1-97

Data Types: single | double | fixed point

Parameters
Select Protection — Type of protection relay
Overcurrent (default) | Overspeed | Overvoltage | Undervoltage

Available protection types to configure block behavior during the overcurrent, overspeed,
overvoltage, and undervoltage conditions.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-98

Hall Speed and Position
Compute speed and estimate position of rotor by using Hall sensors
Library: Motor Control Blockset / Sensor Decoders

Description
The Hall Speed and Position block computes the mechanical speed of the rotor by tracking changes in
the Hall state. The block also estimates the electric position of the rotor by using the direction, Hall
state, and external counter value inputs.

The block executes periodically after a fixed time interval that the controller algorithm defines.

Ports
Input

HallVal — Current Hall sensor output state
scalar

The Hall state at current time. For example, these are the possible valid Hall states (where the MSB
represents the output of the first Hall sensor connected):

• 5 - (101)
• 4 - (100)
• 6 - (110)
• 2 - (010)
• 3 - (011)
• 1 - (001)

Data Types: uint8 | uint16 | uint32

Cnt — External counter value
scalar

The external counter value that the block uses to determine the time elapsed between the Hall state
change and block execution.
Data Types: uint8 | uint16 | uint32

SpdCnt — Count at Hall state change
scalar

This value indicates the clock cycles (time) elapsed between two consecutive changes in the Hall
state.

 Hall Speed and Position

1-99

Data Types: uint8 | uint16 | uint32

Dir — Rotor spin direction during current Hall state
scalar

The direction of the rotor spin (either +1 or –1 indicating positive or negative direction of rotation,
respectively) during the current Hall state.
Data Types: int8 | int16 | int32

SpdVal — Validity of current and previous Hall states and speed calculation
scalar

The port value indicates Hall state validity. The value zero indicates that the current or previous Hall
state is invalid and that the block cannot calculate speed and position.

The value one indicates that both the current and previous Hall states are valid and that the block
can calculate speed and position.
Data Types: uint8 | uint16 | uint32

HallChng — Value of Hall state change flag
scalar

The port value indicates Hall state change and block execution status. The value one indicates that
the Hall state changed, but that the block execution is pending. The value zero indicates that the
block has completed executing the last Hall state change.
Data Types: uint8 | uint16 | uint32

Output

θe — Electrical position of rotor
scalar

The estimated electrical position of the rotor based on the Expected hall sequence in positive
direction parameter and the Direction, HallVal, and CounterValue inputs.

Dependencies

To enable this port, set Block output to either Position or Speed and position.
Data Types: single | double | fixed point

⍵m — Mechanical speed of rotor
scalar

The mechanical speed of the rotor in revolutions per minute. The block calculates this value by
tracking the Hall state changes.

The port returns zero if the SpdVal input is zero.

Dependencies

To enable this port, set Block output to either Speed or Speed and position.
Data Types: single | double | fixed point

1 Blocks

1-100

HallChngRst — Resets Hall state change flag to zero
scalar

The port outputs a value of zero (sets the Hall state change flag to zero) indicating that the block has
successfully executed speed and position computations for the last Hall state change.
Data Types: single | double | fixed point

Parameters
General

Block output — Select output ports
Speed and position (default) | Speed | Position

Select the available block output ports as one of the following values:

• Speed and position
• Speed
• Position

Counter size — Size of external counter register
32 bits (default) | 8 bits | 16 bits

The register size of the external counter. The maximum counter value is 2n‐1, where n = counter size.

Counter clock frequency (Hz) — Clock frequency of external counter
90e6 (default) | scalar

The clock frequency of the external counter.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The time between two consecutive instances of block execution.

Number of pole pairs — Number of pole pairs available in motor
8 (default) | scalar

Number of pole pairs available in the motor.

Minimum detectable speed (RPM) — Minimum speed that block can detect
20 (default) | scalar

The block does not calculate position for speed below this value.

Speed measurement interval — Interval over which block measures speed
Every 180 Degrees (default) | Every 60 Degrees

Rotor angular displacement that represents the interval at which the SpdCnt port value was
calculated.

Speed unit — Unit of rotor angular speed output
Radians/sec (default) | Degrees/sec | RPM | Per unit

 Hall Speed and Position

1-101

Unit of the angular velocity or mechanical speed (⍵m) output.

Dependencies

To enable this parameter, set Block output to either Speed or Speed and position.

Speed datatype — Data type of rotor angular speed output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Data type of the rotor angular speed output.

Dependencies

To enable this parameter, set Block output to either Speed or Speed and position.

Position

Expected hall sequence in positive direction — Sequence indicating positive
direction
ABC (default) | CBA | Custom sequence

The Hall sensor sequence that represents the positive direction of rotor spin.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Sequence — Custom sequence indicating positive direction
[5,4,6,2,3,1] (default) | scalar

The custom sequence that you can enter to represent rotor spin in the positive direction.

Dependencies

To enable this parameter:

• Set Block output to either Position or Speed and position.
• Set Expected hall sequence in positive direction to Custom sequence.

Order of extrapolation of position — Indicates precision in position computation
1st Order (default) | 2nd Order

The 1st Order option is less accurate in computing position, but quick. The 2nd Order option is
more accurate, but needs more computation time. These equations describe the options:

θ1st Order = θsector + ωt

θ2nd Order = θsector + ωt + 1
2αt2

where:

θ1st Order = Position computed by using 1st order extrapolation.

θ2nd Order = Position computed by using 2nd order extrapolation.

θsector = Sector angle defined by the Hall sensor output.

1 Blocks

1-102

ω = Angular velocity of the rotor.

α = Angular acceleration of the rotor.

t = Time spent in a sector.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Position unit — Unit of angular speed output
Radians (default) | Degrees | Per unit

Unit of angular speed output.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Position datatype — Data type of angular speed output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

Data type of angular speed output.

Dependencies

To enable this parameter, set Block output to either Position or Speed and position.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Hall Validity | Mechanical to Electrical Position | PI Controller

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Hall Speed and Position

1-103

Hall Validity
Compute rotor spin direction and validity of Hall sensor sequence
Library: Motor Control Blockset / Sensor Decoders

Description
The Hall Validity block checks and validates every state of the Hall sensor output sequence. The block
identifies the condition when one or more Hall sensors are in an invalid state.

The block executes when a Hall sensor output state (or Hall state) changes.

Ports
Input

HallVal — Current Hall sensor output state
scalar

The Hall state at current time. These are the possible input values (three-bit numbers where the MSB
represents the output of the first Hall connected):

• 5 - (101)
• 4 - (100)
• 6 - (110)
• 2 - (010)
• 3 - (011)
• 1 - (001)

Note The output port Invalid indicates a bad hall sensor condition.

Data Types: uint8 | uint16 | uint32

PrevHallVal — Previous Hall sensor output state
scalar

The Hall state prior to the current state.
Data Types: uint8 | uint16 | uint32

Cnt — External counter value
scalar

1 Blocks

1-104

The external counter value that the block uses to determine the time elapsed between the Hall state
change and block execution.

Note The counter must reset when a Hall state changes.

Data Types: uint8 | uint16 | uint32

PrevDir — Rotor spin direction during previous Hall state
scalar

The direction of rotor spin (either +1 or -1 indicating positive or negative direction of rotation,
respectively) during the previous Hall state.
Data Types: uint8 | uint16 | uint32

Output

Invalid — Indicator of Hall state validity
scalar

The indicator of Hall sensor validity during the current or previous Hall state. The block checks the
validity of the sensors by comparing the values of the HallVal and PrevHallVal input port with the
value of the Expected hall sequence in positive direction parameter. The port can output these
values:

• 1 – (001) Indicates that one (or more) sensors are bad.
• 0 – (000) Indicates that all sensors are good.

Data Types: single | double | fixed point

SpdCnt — Count at Hall state change
scalar

The value of the Cnt input port when a Hall state changes.

Note The counter must reset when a Hall state changes. Therefore, this port indicates the number of
counts during the previous Hall state.

Data Types: single | double | fixed point

Dir — Rotor spin direction during current Hall state
scalar

The direction of the rotor spin (either +1 or –1 indicating positive or negative direction of rotation,
respectively) during the current Hall state. The block computes the direction by comparing the values
of the HallVal and PrevHallVal input ports with the value of the Expected hall sequence in
positive direction parameter.
Data Types: single | double | fixed point

SpdVal — Validity of current and previous Hall states and speed calculation
scalar

 Hall Validity

1-105

The port outputs zero when either one or both conditions occur:

• The block detects a bad hall sensor state (in either HallVal or PrevHallVal input port values).
• The block detects a change in the rotor spin direction.

The zero value indicates that you cannot calculate the valid speed for the current Hall state because
the current value of SpdCnt is invalid. The port outputs the value one to indicate that a valid speed
calculation is possible.
Data Types: single | double | fixed point

HallChng — Set flag to one, indicating Hall state change
scalar

The port outputs the value one (and sets the Hall state change flag to one) after the Hall state
changes and the block has completed execution.
Data Types: single | double | fixed point

Parameters
Expected hall sequence in positive direction — Sequence indicating positive
direction
ABC (default) | CBA | Custom sequence

The Hall sensor sequence that represents the positive direction of rotor spin.

Sequence — Custom sequence indicating positive direction
[5,4,6,2,3,1] (default) | scalar

The custom sequence that you can enter to represent rotor spin in the positive direction.

Dependencies

To enable this parameter, set Expected hall sequence in positive direction to Custom sequence.

Counter size — Size of external counter register
16 bits (default) | 8 bits | 32 bits

The register size of the external counter. The maximum counter value is 2n‐1, where n = counter size.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-106

See Also
Hall Speed and Position

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Hall Validity

1-107

Mechanical to Electrical Position
Compute electrical position of rotor from mechanical position
Library: Motor Control Blockset / Sensor Decoders

Description
The Mechanical to Electrical Position block computes the electrical position of rotor by using its
mechanical position and mechanical offset value.

Ports
Input

θm — Mechanical position of rotor
scalar

The mechanical position of rotor (as output by the rotor position sensor) in either radians (0 to 2π),
degrees (0 to 360), or per unit (0 to 1).
Data Types: single | double | fixed point

Offset — Mechanical position offset
scalar

The deviation of the rotor's electrical zero from the mechanical zero position. Unit of offset is
identical to the unit of the mechanical position input.
Dependencies

• To enable this port, set Specify offset via to Input port.
• Inputs must be of the same data type.

Data Types: single | double | fixed point

Output

θe — Electrical position of rotor
scalar

The electrical position of the rotor with a range that is identical to that of the mechanical position
input. Data type of the electrical position is identical to that of the input.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

1 Blocks

1-108

Number of pole pairs available in the motor.

Input mechanical angle unit — Unit of mechanical position of rotor
Per unit (default) | Radians | Degrees

Unit of the mechanical position of the rotor.

Offset input type — Method to specify offset
Input port (default) | Specify via dialog

The method you want to use to specify the mechanical position offset. Select Input port to enable
and use the input port Offset. Select Specify via dialog to provide the offset value using the
dialog box.

Mechanical offset — Value of mechanical position offset
0 (default) | scalar

The unit of the offset is identical to that of the unit of the mechanical position input.

Dependencies

To enable this parameter, set Specify offset via to Specify via dialog.

Input data type — Data type of input ports
single (default) | double | fixed point

The data type that you want to use for the input ports.

Note The block runs faster, if you select either fixdt(1,16,0) or fixdt(1,16,2^0,0) input data
type and provide fixed point values to the input ports.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

 Mechanical to Electrical Position

1-109

ConstrainedOutputPipeline Number of registers to place at the outputs by
moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Hall Speed and Position | Quadrature Decoder | Position Generator | PI Controller | Sine-Cosine
Lookup

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-110

Quadrature Decoder
Compute position of quadrature encoder
Library: Motor Control Blockset / Sensor Decoders

Description
The Quadrature Decoder block computes the position of the quadrature encoder.

To calculate the angular position of the quadrature encoder (and the rotor) in either degrees, radians,
or per-unit, the block uses one of the following methods.

• Difference between current encoder counter value and encoder counter value at the previous
index pulse (when index pulse is available).

• Current encoder counter value (when index pulse is not available).

This figure shows a quadrature encoder disk with two channels (QEPA and QEPB) and an index pulse
(QEPI):

In this example, the timer driven by the QEP increments by four for each slit:

 Quadrature Decoder

1-111

Equations

The block computes the angular position (in counts) of the quadrature encoder as:

When the encoder rotates in the clockwise direction:

• If Idx ≤ Cnt,

Position count = Cnt − Idx
• If Idx > Cnt and the shaft continues to rotate in the clockwise direction,

Position count = Cnt − Idx
• If Idx > Cnt and the shaft starts rotating in the anticlockwise direction,

Position count = Counts per revolution− Idx− Cnt

When the encoder rotates in the anticlockwise direction:

• If Idx ≥ Cnt,

Position count = Counts per revolution− Idx− Cnt
• If Idx < Cnt and the shaft continues to rotate in the anticlockwise direction,

Position count = Counts per revolution− Idx− Cnt
• If Idx < Cnt and the shaft starts rotating in the clockwise direction,

Position count = Cnt − Idx

When you clear the External index count parameter, the Idx pulse resets Cnt to zero, therefore:

Position count = Cnt

1 Blocks

1-112

where:

• Position count is the angular position of the quadrature encoder in counts.
• Counts per revolution is the number of counts in one rotation cycle of the quadrature encoder.

The block computes the output θm as:

Position = 360 × Position count/ Encoder slits × Encoder counts per slit (in degrees)

Position = 2π × Position count/(Encoder slits × Encoder counts per slit) (in radians)

Position = Cnt/ Encoder slits × Encoder counts per slit (in per-unit)

Ports
Input

Cnt — Quadrature encoder counter value
scalar

Value that the quadrature encoder counter generates with respect to the slit-position. The port only
accepts a scalar unsigned integer based on the Counter size parameter. For example, if you select 8
bits for Counter size, the input data type must be uint8.
Data Types: uint8 | uint16 | uint32

Idx — Quadrature encoder counter value at last index pulse
scalar

Value that the quadrature encoder counter generated with respect to the slit-position at the time of
the last index pulse. The port only accepts a scalar unsigned integer based on the Counter size
parameter. For example, if you select 8 bits for Counter size, the input data type must be uint8.
Dependencies

To enable this port, select the External index count parameter.
Data Types: uint8 | uint16 | uint32

Note The input data types for both Cnt and Idx must be identical.

Output

θm — Angular position of quadrature encoder
scalar

Angular position that the block computes based on the Cnt and Idx inputs.
Data Types: single | double | fixed point

Parameters
Encoder slits — Number of slits per phase
1000 (default) | scalar

 Quadrature Decoder

1-113

The number of slits available in each phase of the quadrature encoder.

Encoder counts per slit — Number of counts generated for every slit
4 (default) | 1 | 2

The number of counts that the quadrature encoder generates for every slit. A count indicates a slit
position. For example, select 4 (quadrature mode) if you want the encoder to generate four counts
corresponding to 00, 10, 11, and 01 slit positions or values. If you select the quadrature mode:

Encoder density, in counts per revolution (post-quadrature) = Encoder counts per slit (4) ✖
Encoder slits

Counter size — Size of quadrature encoder counter
16 bits (default) | 8 bits | 32 bits

Counter size signifies the register size of the counter used by the processor to count the quadrature
encoder pulses. It is the data type of the counter output of eQEP.

External index count — Enable Idx input port
on (default) | off

The block enables the Idx input port only if you select this parameter. The block expects that the Cnt
input port value resets at the time of the Idx pulse.

Position unit — Unit of angular position output
Radians (default) | Degrees | Per unit

Unit of the angular position output.

Position data type — Data type of angular position output
single (default) | double | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type expression>

The data type for the angular position output.

Note The Quadrature Decoder block may occasionally display the warning message 'Wrap on
overflow detected.'

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.

1 Blocks

1-114

HDL Architecture

This block has one default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | Mechanical to Electrical Position

Topics
“Current Sensor ADC Offset and Position Sensor Calibration”
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Quadrature Decoder

1-115

Resolver Decoder
Compute motor mechanical position and speed as well as sine and cosine values of motor electrical
position
Library: Motor Control Blockset / Sensor Decoders

Description
The Resolver Decoder block computes the following for a resolver connected to a motor shaft:

• Mechanical angular position of motor
• Sine and cosine of electrical angular position of motor
• Mechanical speed of motor

Resolver Operation

A resolver uses a primary excitation input signal to generate the modulated secondary sine and
cosine waveforms, which is then sampled by the ADC. The resolver utilizes one winding to two
winding transformations. The sine and cosine modulation occurs in the secondary windings because
of the design and construction of these windings, which places them at positions that are 90 degrees
apart.

1 Blocks

1-116

Block algorithm

The block uses the correctly sampled and normalized version of secondary sine and cosine waveforms
to demodulate the sine and cosine signals using which it determines the electrical position of the
resolver. It converts this position into its mechanical equivalent according to the number of pole pairs
available in the resolver. The resulting value indicates the mechanical position of the motor.

The block also uses the demodulated sine and cosine signals (sine and cosine of resolver electrical
angle) to compute the motor speed as well as the sine and cosine values of the motor electrical
position.

Resolver excitation methods

The block supports the following two excitation methods:

• Sinusoidal excitation — When the primary excitation signal is sinusoidal. This generates sinusoidal
secondary waveforms after modulation.

 Resolver Decoder

1-117

• Square pulse excitation — When the primary excitation signal is a square pulse signal. This
generates square pulse secondary signals after modulation.

Sinusoidal excitation

When you use sinusoidal excitation method, the block expects the secondary sine and cosine resolver
signals that are sampled, by default, at the rate of 16 samples per excitation signal cycle, as shown
below. It may also add a phase delay to the sampled sine and cosine signals with respect to the
excitation signal.

When using sinusoidal excitation, the block does not normalize the modulated sine and cosine
resolver output automatically. Normalize these modulated waveforms (within the range of [-1,1] and
centred at 0) before you provide them to the block.

1 Blocks

1-118

The block then demodulates the sampled signal. It computes the average, peak amplitude values, and
the sign of the peak amplitude of a signal cycle as:

The block computes the average, peak amplitude values, and the sign of the peak amplitude of a
signal cycle as

Åaverage = 1
n∑i = 0

n− 1

(Åi)

 Resolver Decoder

1-119

Åpeak = Åaverage × π
2

Sign of Peak = Sign of ∑i = phase delay

n
2 − 1 + phase delay

Åi

where:

• Åaverage is the average amplitude value of a signal cycle
• n is the number of samples per excitation cycle

• Åpeak is the peak amplitude value of a signal cycle

The block computes the electrical angular position of the resolver as

θ = atan2
usin_peak
ucos_peak

where:

• usin_peak is the Åpeak of the secondary sine signal
• ucos_peak is the Åpeak of the secondary cosine signal
• θ is the electrical angular position of the resolver

This enables the block to demodulate and extract the sine and cosine envelopes. It uses these
demodulated envelop signals to compute the block outputs.

Square pulse excitation

When using the square pulse excitation method, the block expects the secondary sine and cosine
signals sampled at the rate of one sample every pulse as shown below.

If you select Enable input normalization field, then after receiving the discrete time sampled
waveform, the block automatically normalizes the waveform (within the range of [-1,1] and centred at
0). To perform normalization within the block, ensure that both input signals have equal peak
magnitudes.

1 Blocks

1-120

It demodulates the sine and cosine signals. It uses these demodulated signals to compute the block
outputs.

Computation of motor mechanical position

When using either sinusoidal or square pulse excitation, the block uses the demodulated waveforms
to compute the electrical position of the resolver. This resolver position may vary using either a
positive ramp (for clockwise rotation) or a negative ramp (for anti-clockwise rotation).

To correctly detect the wrap-around (from 0 PU to 1 PU or from 1 PU to 0 PU), the block measures
the difference between the two consecutive samples. Because the input signal frequency is always
less than ½ of sampling frequency, a difference less than -0.5 PU indicates a positive ramp whereas a
difference that is less than +0.5 PU indicates a negative ramp.

 Resolver Decoder

1-121

After identifying the resolver electrical position direction, the block uses the number of resolver pole
pairs to compute the mechanical position of the resolver (and the motor) by extrapolating the ramp
signal.

For example, for a 3-pole pair resolver, the block extrapolates the ramp to achieve a magnitude that is
3 times the original magnitude. It then performs a division by 3 to obtain the resolver mechanical
position as shown below.

1 Blocks

1-122

 Resolver Decoder

1-123

Computation of sine and cosine of electrical motor position

When using either sinusoidal or square pulse excitation, the block generates the demodulated sine
and cosine waveforms (sine and cosine of resolver electrical position). From these demodulated
waveforms, the block computes sine and cosine of motor electrical position using an arithmetic
computation according to the ratio of motor and resolver pole pairs. To accommodate different
possible ratios, the block utilizes unit blocks, which in turn use a generic binary-coded decimal (BCD)
based structure.

For example, if the ratio of motor and resolver pole pairs (n) is 5, the following image indicates the
BCD based algorithm that eventually generates sine and cosine of motor electrical position.

Therefore, n = number of motor pole pairs/ number of resolver pole pairs = 5.

BCD code for n = 5 is [0 0 1 0 1] or [24 23 22 21 20]. The block configures the algorithm for
this sequence as shown below.

1 Blocks

1-124

The block supports values of n (integers) ranging from 1 to 31.

Note The block optimizes the computation according to the ratio n. For example, if n = 5, the block
only computes sin_2th and cos_2th twice by utilizing the following two subsystems only.

 Resolver Decoder

1-125

Similarly, whenever a switch does not bypass the signals, it terminates them as shown below to
ensure minimal and optimized code generation.

Computation of motor speed

When using either sinusoidal or square pulse excitation, the block generates the demodulated sine
and cosine waveforms (sine and cosine of resolver electrical position). From these waveforms, the
block computes the motor mechanical speed using the algorithm shown below.

At first, it computes the difference between the two samples of these discrete time sampled signals
and adds them:

In the ideal scenario, when using continuous time signals:

1 Blocks

1-126

d
dtsinθ = ωrcosωr t

d
dtcosθ = − ωr sinωrt

cosθ d
dtsinθ− sinθ d

dtcosθ = ωrcos2θ + ωrsin2θ = ωr

θ = ωr t

Where, ωr is constant with respect to time.

Because we use discrete time sampled signals:

cosθ Δsinθ
Δt − sinθ Δcosθ

Δt

sinθ = sinωrTsn

cosθ = cosωrTsn

Δsinθ
Δt =

sinωrTsn− sin ωrTs n− 1
Ts

Δcosθ
Δt =

cosωrTsn− cos ωrTs(n− 1)
Ts

cosθ Δsinθ
Δt − sinθ Δcosθ

Δt =
sinωrTs

Ts

Δt = Ts

cosθ ⋅ Δsinθ
Ts

− sinθ ⋅ Δcosθ
Ts

=
sinωrTs

Ts

cosθ ⋅ Δsinθ− sinθ ⋅ Δcosθ = sinωrTs

If ωxTs is very small, then sinωrTs approximately equals to ωrTs. This is speed x time, therefore,
this term indicates position difference for a sample duration Δθ.

cosθ ⋅ Δsinθ− sinθ ⋅ Δcosθ = Δθ = sinωrTs ≈ ωrTs

ωr = 1
Ts

sin−1Δθ

ωr ≈
Δθ
Ts

To obtain a more accurate speed, we use the Taylor series expansion of sin-1 to add the following

compensation of Δθ3

6 .

 Resolver Decoder

1-127

ωr = 1
Ts

sin−1Δθ

ωr ≈
1
Ts

Δθ + Δθ3
6

Because the error is negligible, the preceding ωr value can be considered accurate. Therefore, we can
state:

ωr = 1
Ts

Δθ + Δθ3
6

ωr = g
Ts

Δθ + Δθ3
6

ω =
ωr
Pr

ω = g
TsPr Δθ + Δθ3

6

Where, Pr is the number of pole pairs of resolver.

The block multiplies the gain of g
TsPr separately to avoid data overflow when using fixed point data

type.

Here, Δθ3
6 is the approximate compensation that the block applies to the computed speed as shown

below to obtain more accurate version of the actual mechanical speed.

Where:

• g is the speed conversion factor.
• θ is the electrical position of the resolver.
• ωr is the electrical speed of the resolver.
• Δθ is the resolver electrical position difference per sample.
• ω is the mechanical speed of the resolver (or motor).
• Ts is the sampling time of the sine and cosine envelop signals.

Note The block inputs should have identical amplitude and data types (either signed fixed or floating
point).

1 Blocks

1-128

Ports
Input

V Sin — Sampled secondary sine signal
vector

Secondary sine waveform output from the resolver that is sampled. When using sinusoidal excitation,
this signal should be normalized within the range of [-1, 1] and centred at 0.
Data Types: single | double | fixed point

V Cos — Sampled secondary cosine signal
vector

Secondary cosine waveform output from the resolver that is sampled. When using sinusoidal
excitation, this signal should be normalized within the range of [-1, 1] and centred at 0.
Data Types: single | double | fixed point

Output

θm — Motor mechanical position
scalar

Mechanical angular position of the resolver (and the motor) in either degrees, radians, or per-unit.
Data Types: single | double | fixed point

sinθe — Sine of electrical motor position
scalar

Sine of electrical angular position of the motor.
Data Types: single | double | fixed point

cosθe — Cosine of electrical motor position
scalar

Cosine of electrical angular position of the motor.
Data Types: single | double | fixed point

ωm — Motor mechanical speed
scalar

Mechanical speed of the motor in either degrees/sec, radians/sec, RPM, or per-unit.
Data Types: single | double | fixed point

Parameters
Block Output — Output of block
Mechanical position (default) | Sine and Cosine electrical position | Mechanical
speed

The output of the Resolver Decoder block:

 Resolver Decoder

1-129

• Mechanical position — Enable the block to compute motor mechanical position.
• Sine and Cosine electrical position — Enable the block to compute sine and cosine values of motor

electrical position.
• Mechanical speed — Enable the block to compute the mechanical speed of the motor.

Input Parameters

Number of pole-pairs for resolver — Resolver pole pair count
1 (default) | scalar

The number of pole pairs available in the resolver.

Type of excitation method — Resolve excitation method
Sinusoidal Excitation (default) | Square Pulse Excitation

The resolver excitation method used to obtain secondary sine and cosine waveforms.

Enable input normalization — Enable block to normalize inputs
off (default) | on

When using square pulse excitation method, the block normalizes the secondary sine and cosine
inputs only if you select this parameter.
Dependencies

To enable this parameter, set Type of excitation method to Square Pulse Excitation.

Inputs for sinusoidal excitation method

Phase delay (electrical radians) — Phase delay for input signals
0.1746 (default) | scalar

The phase delay that the block must add to the Sin and Cos input port signals.
Dependencies

To enable this parameter, set Type of excitation method to Sinusoidal Excitation.

Number of samples per excitation signal — Samples per cycle of input signal
16 (default) | even scalar greater than zero

Number of samples available in one cycle of the Sin and Cos input port signals.
Dependencies

To enable this parameter, set Type of excitation method to Sinusoidal Excitation.

Inputs for Sine and Cosine electrical position

Number of pole-pairs for motor — Motor pole pair count
3 (default) | scalar

The number of pole pairs available in the motor.
Dependencies

To enable this parameter, set Block Output to Sine and Cosine electrical position.

1 Blocks

1-130

Position offset (mechanical radians) — Resolver mechanical position offset (in
radians)
0 (default) | scalar

The offset between resolver mechanical position and motor mechanical position (in radians).
Dependencies

To enable this parameter, set Block Output to Sine and Cosine electrical position.

Integer rounding mode — Rounding mode for fixed-point operations
Zero (default) | Simplest

Select the rounding mode for fixed-point operations used when computing sine and cosine of motor
electrical position. You can select:

• Simplest — Generates compact rounding code with faster computation. However, with time, it may
add bias in sine and cosine electrical position output.

• Zero — Ensures that the rounding code does not add any bias in the sine and cosine electrical
position output. However, this results in slower computation.

Dependencies

To enable this parameter, set Block Output to Sine and Cosine electrical position.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.
Dependencies

To enable this parameter, set Block Output to Mechanical speed.

Output Parameters

Position unit — Unit of position output
Radians (default) | Degrees | Per-unit

The unit of the mechanical position output of the block.
Dependencies

To enable this parameter, set Block Output to Mechanical position.

Speed unit — Unit of speed output
Degrees/Sec (default) | Radians/Sec | RPM | Per-unit

The unit of the mechanical speed output of the block.
Dependencies

To enable this parameter, set Block Output to Mechanical speed.

Base speed (RPM) — Base speed of the motor (RPM)
2000 (default) | scalar

The rated speed of the motor (in RPM).

 Resolver Decoder

1-131

Dependencies

To enable this parameter, set Speed unit to Per-Unit and Block Output to Mechanical speed.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“Monitor Resolver Using Serial Communication”

1 Blocks

1-132

Software Watchdog Timer
Output true until counter reaches maximum count limit
Library: Motor Control Blockset / Sensor Decoders

Description
The Software Watchdog Timer block increments the counter value until either the block receives a
Restart input pulse, or the count reaches the value of the Maximum count parameter.

On receiving the Restart pulse, the block restarts the counter and starts incrementing the counter
value again when the Restart pulse falls.

The block maintains the true Status output until the counter value remains less than the value of
Maximum count parameter. When the counter reaches Maximum count, the block stops the
counter and turns the Status false.

Ports
Input

Restart — Pulse to restart watchdog timer counter
scalar

The pulse (true value) that restarts the watchdog timer counter. The counter resumes counting when
the pulse falls (false value).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Output

Status — Watchdog timer status
scalar

The watchdog timer status indicated as one of the following:

• True indicates that the counter value is less than the value of the Maximum count parameter.
• False indicates that the counter value is equal to the value of the Maximum count parameter and

the block has stopped the counter.

Data Types: single | double | fixed point

Parameters
Maximum count — Maximum limit of watchdog timer value
10 (default) | scalar

 Software Watchdog Timer

1-133

The maximum limit of the watchdog timer counter value that causes the block to stop the counter and
turn the watchdog timer status to false.

Counter data type — Data type of Status output
uint8 (default) | uint16 | uint32

The data type of the watchdog timer status output.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-134

Speed Measurement
Compute speed from rotor angular position
Library: Motor Control Blockset / Sensor Decoders

Description
The Speed Measurement block calculates the angular speed from the angular position of the rotor by
calculating the change in the angular position with respect to time.

Ports
Input

θ — Angular position of rotor
scalar

Angular position of the rotor specified in either radians, degrees, or per-unit.
Data Types: single | double | fixed point

Output

⍵ — Angular speed of rotor
scalar

Angular speed that the block computes based on the angular position input.
Data Types: single | double | fixed point

Parameters
Position unit — Unit of angular position
Radians (default) | Degrees | Per unit

The unit of the angular position θ.

Position scaling datatype — Data type of angular position input
uint32 (default) | uint16 | uint64

The data type of the angular position input θ.

Speed calculation criteria — Method of speed calculation
Maximum application speed (default) | Speed resolution | Time interval for speed
calculation

The speed calculation method used in the block. The selected method determines the range of the
rotor speed that the block can measure.

 Speed Measurement

1-135

These parameters change values according to the Speed calculation criteria parameter:

Parameter name Maximum application
speed

Speed Resolution Time interval for
speed calculation

Delays for speed
calculation (number
of samples)

299 28 28

Maximum measurable
speed (RPM)

1000 10344.8276 10713.2857

Measurable speed
resolution (RPM)

4.6566e-07 4.9892e-06 4.9892e-06

Discrete step size (s) — Sample time after which block executes again
100e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

These parameters change values according to the Discrete step size (s) parameter value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Maximum application speed (RPM) — Maximum measurable rotor speed
1000 (default) | scalar

The maximum rotor speed (in rotations per minute) that the block can measure.

These parameters change values according to the Maximum application speed (RPM) parameter
value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Maximum application speed.

Speed Resolution (RPM) — Minimum detectable speed
5e-6 (default) | scalar

The minimum value of change in the θ input per unit time that the block can detect.

These parameters change values according to the Speed Resolution (RPM) parameter value:

• Delays for speed calculation (number of samples)
• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Speed resolution.

1 Blocks

1-136

Delays for speed calculation (number of samples) — Number of angular position
samples measured
299 or 28 (default) | scalar

The number of samples of the angular position input that the block measures to compute the average
position value.

These parameters change values according to the Delays for speed calculation (number of
samples) parameter value:

• Maximum measurable speed (RPM)
• Measurable speed resolution (RPM)

Dependencies

To enable this parameter, set Speed calculation criteria to Time interval for speed
calculation.

Maximum measurable speed (RPM) — Maximum measurable speed
1000 or 10344.8276 or 10713.2857 (default) | scalar

The absolute maximum speed that the block can measure.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Measurable speed resolution (RPM) — Minimum speed resolution used for speed
computation
4.6566e-07 or 4.9892e-06 (default) | scalar

The minimum speed resolution that the block uses for speed computation. It is always less than or
equal to Speed Resolution (RPM).

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Speed unit — Unit of angular speed output
RPM (default) | Degrees/Sec | Radians/Sec | Per unit based on maximum measurable
speed | Per unit based on dialog

Unit of the angular speed output.

Per unit speed (RPM) — Speed (in RPM) for per-unit calculation
1000 (default)

Specify the speed in RPM for per-unit calculation.

Dependencies

This parameter appears only if Per unit based on dialog is selected for Speed unit.

Speed data type — Data type of angular speed output
single (default) | double | fixed point

The data type of the angular speed output ⍵.

 Speed Measurement

1-137

Note The Speed Measurement block may occasionally display the warning message 'Wrap on
overflow detected.'

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

HDL Coder provides additional configuration options that affect HDL implementation and synthesized
logic.
Supported Block Input Types

For HDL code generation with the Speed Measurement block, the input data type must be fixed
point.
HDL Architecture

This block has one default HDL architecture.
HDL Block Properties

ConstrainedOutputPipeline Number of registers to place at the outputs by

moving existing delays within your design.
Distributed pipelining does not redistribute these
registers. The default is 0. For more details, see
“ConstrainedOutputPipeline” (HDL Coder).

InputPipeline Number of input pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“InputPipeline” (HDL Coder).

OutputPipeline Number of output pipeline stages to insert in the
generated code. Distributed pipelining and
constrained output pipelining can move these
registers. The default is 0. For more details, see
“OutputPipeline” (HDL Coder).

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Quadrature Decoder | Position Generator | PI Controller | ACIM Feed Forward Control | ACIM Torque
Estimator | PMSM Feed Forward Control | PMSM Torque Estimator

1 Blocks

1-138

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Speed Measurement

1-139

Sliding Mode Observer
Compute electrical position and mechanical speed of rotor
Library: mcbpositiondecoderlib / Archive

Description
The Sliding Mode Observer block computes the electrical position and mechanical speed of a PMSM
by using the per unit voltage and current values along the α- and β-axes of the stationary αβ
reference frame.

Equations

These equations describe the computation of the electrical position and mechanical speed by the
block.

diαβ
dt = Φiαβ + ΓVαβ− Γeαβ

iαβ = iα iβ
T

Vαβ = Vα Vβ
T

eαβ = eα eβ
T =

−ψωesinθe

ψωecosθe

Φ =
− R

L 0

0 − R
L

Γ =
1
L 0

0 1
L

These equations describe the discrete-time sliding mode observer operation by using per-unit values:

i αβ(k + 1)P . U = Ai αβ(k)P . U +
Vrated
Irated

B(vαβ(k)P . U − ϑαβ(k)P . U)

ϑαβ(k + 1)P . U = ϑαβ(k)P . U + 2πf0 × (Ζ(Irated(i αβ(k)P . U − iαβ(k)P . U)) − ϑαβ(k)P . U)

A = eΦTs

1 Blocks

1-140

B =∫
0

Ts

eΦτdτ

f0 =
F0
Fs

Fs = 1
Ts

where:

• eα , iα are the stator back EMF and current for the α axis.
• eβ , iβ are the stator back EMF and current for the β axis.
• vα, vβ are the stator supply voltages.
• R is the stator resistance.
• L is the stator inductance.
• ψ is the flux linkage due to permanent magnet.
• ωe is the electrical angular velocity.
• θe is the electrical position of the rotor.
• t is the time.
• Ts is the sampling period.
• k is the sample count.
• Vrated is the nominal voltage corresponding to 1 per-unit.
• Irated is the nominal current corresponding to 1 per-unit.
• Z is the attraction function.

 Sliding Mode Observer

1-141

• f0 is the cut-off frequency of the filter in cycles per sample.

• F0 is the cut-off frequency in cycles per second.

• Fs is the sample frequency in samples per second.

• ϑαβ(k) is the estimated back EMF.

Tuning

Use the Current observer gain and Sliding surface limit parameters to tune the block.

• To improve stability, increase the Sliding surface limit or reduce the Current observer gain.
• To reduce distortion, decrease the Current observer gain or increase the Sliding surface limit.

Ports
Input

Vα — α-axis voltage
scalar

Per-unit voltage component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

1 Blocks

1-142

Vβ — β-axis voltage
scalar

Per-unit voltage component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Per-unit current component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iβ — β-axis current
scalar

Per-unit current component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset the block
scalar

The pulse (true value) that resets and restarts the processing of the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of PMSM
scalar

The estimated electrical position of the rotor.
Data Types: single | double | fixed point

⍵m — Mechanical speed of PMSM
scalar

The estimated mechanical speed of the rotor.
Data Types: single | double | fixed point

Parameters
Observer parameters

Current observer gain — Sliding mode observer gain for current
1.1 (default) | scalar

The attraction function gain.

Sliding surface limit — Maximum limit of sliding surface of SMO
0.15 (default) | scalar

The boundary layer limit of the attraction function's domain.

 Sliding Mode Observer

1-143

Position unit — Unit of position output
Radians (default) | Degrees | Per unit

Unit of the position output.

Position data type — Data type of position output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the position output.

Speed unit — Unit of speed output
RPM (default) | Degrees/sec | Radians/sec | Per unit

Unit of the speed output.

Speed data type — Data type of speed output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the speed output.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Motor parameters

Stator resistance (ohm) — Resistance
0.4836 (default) | scalar

Stator phase winding resistance (in ohm).

Stator inductance (H) — Inductance
1e-3 (default) | scalar

Stator phase winding inductance (in Henry).

Maximum application speed (RPM) — Maximum supported speed value
6000 (default) | scalar

Maximum value of speed (in RPM) that the block can support. For a speed beyond this value, the
block generates incorrect outputs.

Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Base voltage — Nominal voltage corresponding to one per unit
68 (default) | scalar

The maximum phase voltage applied to PMSM. For details, see “Per-Unit System”.

1 Blocks

1-144

Base current — Nominal current corresponding to one per unit
10 (default) | scalar

The maximum measurable current supplied to PMSM. For details, see “Per-Unit System”.

Note The Sliding Mode Observer block may occasionally display the warning message 'Wrap on
overflow detected.'

Version History
Introduced in R2020a

References
[1] Y. Kung, N. V. Quynh, C. Huang and L. Huang, "Design and simulation of adaptive speed control

for SMO-based sensorless PMSM drive," 2012 4th International Conference on Intelligent and
Advanced Systems (ICIAS2012), Kuala Lumpur, 2012, pp. 439-444 (doi: 10.1109/
ICIAS.2012.6306234)

[2] Zhang Yan and V. Utkin, "Sliding mode observers for electric machines-an overview," IEEE 2002
28th Annual Conference of the Industrial Electronics Society. IECON 02, Sevilla, 2002, pp.
1842-1847 vol.3. (doi: 10.1109/IECON.2002.1185251)

[3] T. Bernardes, V. F. Montagner, H. A. Gründling and H. Pinheiro, "Discrete-Time Sliding Mode
Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine," in IEEE
Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1679-1691, April 2014 (doi: 10.1109/
TIE.2013.2267700)

[4] Z. Guo and S. K. Panda, "Design of a sliding mode observer for sensorless control of SPMSM
operating at medium and high speeds," 2015 IEEE Symposium on Sensorless Control for
Electrical Drives (SLED), Sydney, NSW, 2015, pp. 1-6. (doi: 10.1109/SLED.2015.7339255)

See Also
Flux Observer | Clarke Transform | Inverse Park Transform | Sine-Cosine Lookup | PI Controller

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Sliding Mode Observer

1-145

IIR Filter
Implement infinite impulse response (IIR) filter
Library: Motor Control Blockset / Signal Management

Description
The IIR Filter block implements a discrete first-order infinite impulse response (IIR) filter on the
specified input signal. The block supports fixed-point and floating-point data types. The block is also
optimized for code generation when used with the model settings and configuration adopted by the
examples shipped in Motor Control Blockset.

We recommend that you use fixed-step discrete solver for this block to enable code generation and
ensure accurate simulation.

Equations

You can configure the IIR filter by using the filter coefficient (a) block parameter for a given cutoff
frequency (fc).

This equation describes computation of the filter coefficient from the cutoff frequency:

a =
2πTsfc

2πTsfc + 1

Alternatively, the block also computes the theoretical cutoff frequency for the given sample time
using a filter coefficient:

fc = a
(1 − a) ⋅ 2π ⋅ Ts

Use the Filter type parameter to configure the block either as a low-pass or high-pass filter.

Low-pass filter:

y k = a ⋅ xk + (1 − a) ⋅ yk− 1

High-pass filter:

y k = (1 − a) ⋅ xk− (1 − a) ⋅ xk− 1 + (1 − a) ⋅ yk− 1

where:

• fc is the cutoff frequency of the IIR filter.
• a is the filter coefficient in the range (0, 1].
• y k is the filtered output value at time k.
• yk− 1 is the filtered output value at time k− 1.

1 Blocks

1-146

• xk is the sampled input value at time k.
• xk− 1 is the filtered output value at time k− 1.
• Ts is the sample time of the IIR Filter block.

Ports
Input

x — Sampled input signal
scalar

Sampled values of the raw input signal in the time domain.
Data Types: single | double | fixed point

Output

y — Filtered output signal
scalar

Filtered output signal returned by the IIR Filter block in the time domain.
Data Types: single | double | fixed point

Parameters
Filter type — IIR filter type
Low-pass (default) | High-pass

Type of the IIR filter.

Filter co-efficient — Filter coefficient of IIR filter
0.01 (default) | scalar in the range (0,1]

Filter coefficient of the IIR filter. The data type of this parameter is the same as that of the input
signal. We suggest that you check the precision of the parameter value in this data type.

Display cutoff frequency — Display the cutoff frequency parameters
off (default) | on

Select this parameter for the block to display the Discrete step size (s) and Theoretical cutoff
frequency (Hz) parameters.

Discrete step size (s) — Step size of discrete-time filter
50e-6 (default) | scalar

Step size of the discrete-time computation (in seconds) used by the IIR filter.

Dependencies

To display this parameter, select the Display cutoff frequency parameter.

Theoretical cutoff frequency (Hz) — Theoretical cutoff frequency of IIR filter
32.1525 | scalar

 IIR Filter

1-147

Theoretical cutoff frequency (in Hertz) of the IIR filter. This parameter is not configurable.

Dependencies

To display this parameter, select the Display cutoff frequency parameter.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

1 Blocks

1-148

MTPA Control Reference
Compute reference currents for Maximum Torque Per Ampere (MTPA) and field-weakening operation
Library: Motor Control Blockset / Controls / Control Reference

Description
The MTPA Control Reference block computes the d-axis and q-axis reference current values for
maximum torque per ampere (MTPA) and field-weakening operations. The computed reference
current values results in efficient output for the permanent magnet synchronous motor (PMSM).

The block accepts the reference torque and feedback mechanical speed and outputs the
corresponding d- and q-axes reference current values for MTPA and field-weakening operations.

The block computes the reference current values by solving mathematical relationships. The
calculations use SI unit system. When working with the Per-Unit (PU) system, the block converts PU
input signals to SI units to perform computations, and converts them back to PU values at the output.

These equations describe the computation of reference d-axis and q-axis current values by the block:

Mathematical Model of PMSM

These model equations describe dynamics of PMSM in the rotor flux reference frame:

vd = idRs +
dλd
dt − ωeLqiq

vq = iqRs +
dλq
dt + ωeLdid + ωeλpm

λd = Ldid + λpm

λq = Lqiq

Te = 3
2p λpmiq + Ld− Lq idiq

Te− TL = J
dωm

dt + Bωm

where:

• vd is the d-axis voltage (Volts).
• vq is the q-axis voltage (Volts).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• Rs is the stator phase winding resistance (Ohms).

 MTPA Control Reference

1-149

• λpm is the permanent magnet flux linkage (Weber).
• λd is the d-axis flux linkage (Weber).
• λq is the q-axis flux linkage (Weber).
• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• Te is the electromechanical torque produced by the PMSM (Nm).
• TL is the load torque (Nm).
• p is the number of motor pole pairs.
• J is the inertia coefficient (kg-m2).
• B is the friction coefficient (kg-m2/ sec).

Base Speed

Base speed is the maximum motor speed at the rated voltage and rated load, outside the field-
weakening region. These equations describe the computation of the motor base speed.

The inverter voltage constraint is defined by computing the d-axis and q-axis voltages:

vdo = − ωeLqiq

vqo = ωe Ldid + λpm

vmax =
vdc

3 − Rsimax ≥ vdo
2 + vqo

2

The current limit circle defines the current constraint which can be considered as:

imax
2 = id

2 + iq2

In the preceding equation, id is zero for surface PMSMs. For interior PMSMs, values of id and iq
corresponding to MTPA are considered.

Using the preceding relationships, we can compute the base speed as:

ωbase = 1
p ⋅

 vmax

Lqiq
2 + Ldid + λpm

2

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωbase is the mechanical base speed of the motor (Radians/ sec).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• vdo is the d-axis voltage when id is zero (Volts).

1 Blocks

1-150

• vqo is the q-axis voltage when iq is zero (Volts).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• Rs is the stator phase winding resistance (Ohms).
• λpm is the permanent magnet flux linkage (Weber).
• vd is the d-axis voltage (Volts).
• vq is the q-axis voltage (Volts).
• vmax is the maximum fundamental line to neutral voltage (peak) supplied to the motor (Volts).
• vdc is the dc voltage supplied to the inverter (Volts).
• imax is the maximum phase current (peak) of the motor (Amperes).
• p is the number of motor pole pairs.

Surface PMSM

For a surface PMSM, you can achieve maximum torque by using zero d-axis current when the motor
is below the base speed. For field-weakening operation, the reference d-axis current is computed by
constant-voltage-constant-power control (CVCP) algorithm defined by these equations:

If ωm ≤ ωbase:

• id_mtpa = 0
•

iq_mtpa = Tref

3
2 ⋅ p ⋅ λpm

• id_sat = id_mtpa = 0
• iq_sat = sat(iq_mtpa, imax)

If ωm > ωbase:

• id_ fw =
(ωe_base− ωe)λpm

ωeLd

• id_sat = max(id_ fw, − imax)
•

iq_ fw = Tref
3
2 ⋅ p ⋅ λpm

• iq_lim = imax
2 − id_sat

2

• iq_sat = sat(iq_ fw, iq lim)

The saturation function used to compute iq_sat is described below:

If iq_ fw < − iq_lim,

iq_sat = − iq_lim

If iq_ fw > iq_lim,

 MTPA Control Reference

1-151

iq_sat = iq_lim

If − iq_lim ≤ iq_ fw ≥ iq_lim,

iq_sat = iq_ fw

The block outputs the following values:

Id
ref = id_sat

Iqref = iq_sat

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• ωbase is the mechanical base speed of the motor (Radians/ sec).
• ωe_base is the electrical base speed of the motor (Radians/ sec).
• id_mtpa is the d-axis phase current corresponding to MTPA (Amperes).
• iq_mtpa is the q-axis phase current corresponding to MTPA (Amperes).
• Tref is the reference torque (Nm).
• p is the number of motor pole pairs.
• λpm is the permanent magnet flux linkage (Weber).
• id_ fw is the d-axis field weakening current (Amperes).
• iq_ fw is the q-axis field weakening current (Amperes).
• Ld is the d-axis winding inductance (Henry).
• imax is the maximum phase current (peak) of the motor (Amperes).
• id_sat is the d-axis saturation current (Amperes).
• iq_sat is the q-axis saturation current (Amperes).
• Id

ref is the d-axis current corresponding to the reference torque and reference speed (Amperes).

• Iqref is the q-axis current corresponding to the reference torque and reference speed (Amperes).

Interior PMSM

For an interior PMSM, you can achieve maximum torque by computing the d-axis and q-axis
reference currents from the torque equation. For field-weakening operation, the reference d-axis
current is computed by voltage and current limited maximum torque control (VCLMT) algorithm.

The reference currents for MTPA and field weakening operations are defined by these equations:

im_ref = 2 ⋅ Tref

3 ⋅ p ⋅ λpm

im = min(im_ref , imax)

1 Blocks

1-152

id_mtpa =
λpm

4 Lq− Ld
−

λpm
2

16 Lq− Ld
2 +

im
2

2

iq_mtpa = im2 − id_mtpa
2

vdo = − ωeLqiq

vqo = ωe Ldid + λpm

vdo
2 + vqo

2 = vmax
2

Lqiq
2 + Ldid + λpm

2 ≤
vmax2

ωe2

iq = imax
2 − id2

Ld
2− Lq

2 id2 + 2λpmLdid + λpm
2 + Lq

2imax
2 −

vmax2

ωe2
= 0

id_ fw =
−λpmLd + λpmLd

2 − Ld
2 − Lq

2 λpm
2 + Lq

2imax
2 −

vmax2

ωe2

Ld
2 − Lq

2

iq_ fw = imax
2 − id_ fw

2

If ωm ≤ ωbase,

Id
ref = id_mtpa

Iqref = iq_mtpa

If ωm > ωbase,

Id
ref = max(id_ fw, − imax)

iq_ fw = imax
2 − id_ fw

2

If iq_ fw < im,

Iqref = iq_ fw

If iq_ fw ≥ im,

Iqref = im

For negative reference torque values, the sign of im and Iqref are updated and equations are modified
accordingly.

 MTPA Control Reference

1-153

where:

• im_ref is the estimated maximum current to produce the reference torque (Amperes).
• im is the saturated value of estimated maximum current (Amperes).
• id_max is the maximum d-axis phase current (peak) (Amperes).
• iq_max is the maximum q-axis phase current (peak) (Amperes).
• Tref is the reference torque (Nm).
• Id

ref is the d-axis current component corresponding to the reference torque and reference speed
(Amperes).

• Iqref is the q-axis current component corresponding to the reference torque and reference speed
(Amperes).

• p is the number of motor pole pairs.
• λpm is the permanent magnet flux linkage (Weber).
• id_mtpa is the d-axis phase current corresponding to MTPA (Amperes).
• iq_mtpa is the q-axis phase current corresponding to MTPA (Amperes).
• Ld is the d-axis winding inductance (Henry).
• Lq is the q-axis winding inductance (Henry).
• imax is the maximum phase current (peak) of the motor (Amperes).
• vmax is the maximum fundamental line to neutral voltage (peak) supplied to the motor (Volts).
• vdo is the d-axis voltage when id is zero (Volts).
• vqo is the q-axis voltage when iq is zero (Volts).
• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• id is the d-axis current (Amperes).
• iq is the q-axis current (Amperes).
• id_ fw is the d-axis field weakening current (Amperes).
• iq_ fw is the q-axis field weakening current (Amperes).
• ωbase is the mechanical base speed of the motor (Radians/ sec).

Ports
Input

Tref — Reference torque value
scalar

Reference torque input value for which the block computes the reference current.
Data Types: single | double | fixed point

⍵m — Mechanical speed
scalar

1 Blocks

1-154

Reference mechanical speed value for which the block computes the reference current.
Data Types: single | double | fixed point

Output

Idref — Reference d-axis current
scalar

Reference d-axis phase current that can efficiently generate the input torque and speed values.
Data Types: single | double | fixed point

Iqref — Reference q-axis current
scalar

Reference q-axis phase current that can efficiently generate the input torque and speed values.
Data Types: single | double | fixed point

Parameters
Type of motor — Type of PMSM
Interior PMSM (default) | Surface PMSM

Type of PMSM based on the location of the permanent magnets.

Number of pole pairs — Number of available pole pairs
4 (default) | scalar

Number of pole pairs available in the motor.

Stator resistance per phase (Ohm) — Resistance of stator phase winding (ohms)
0.36 (default) | scalar

Resistance of the stator phase winding (ohms).

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Stator d-axis inductance (H) — d-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (henry) along the d-axis of the rotating dq reference frame.

Stator q-axis inductance (H) — q-axis stator winding inductance
0.4e-3 (default) | scalar

Stator winding inductance (henry) along the q-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Permanent magnet flux linkage (Wb) — Magnetic flux linkage of permanent magnets
6.4e-3 (default) | scalar

 MTPA Control Reference

1-155

Magnetic flux linkage between the stator windings and permanent magnets on the rotor (weber).

Max current (A) — Maximum phase current limit for motor (amperes)
7.1 (default) | scalar

Maximum phase current limit for the motor (amperes).

DC voltage (V) — DC bus voltage (volts)
24 (default) | scalar

DC bus voltage (volts)

Dependencies

To enable this parameter, set Type of motor to Interior PMSM.

Input signal units — Unit of block input values
Per-Unit (PU) (default) | SI Units

Unit of the block input values.

Base speed (rpm) — Base speed of motor (rpm)
4107 (default) | scalar

Speed of the motor at the rated voltage and rated current outside the field weakening region.

Base current (A) — Base current for per-unit conversion (amperes)
19.3 (default) | scalar

Current corresponding to 1 per-unit. We recommend that you use the maximum current detected by
an Analog to Digital Converter (ADC) as the base current.

Dependencies

To enable this parameter, set Input signal units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit conversion (Nm)
0.74112 (default) | scalar

Torque corresponding to 1 per-unit. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input signal units to Per-Unit (PU).

Version History
Introduced in R2020a

References
[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

1 Blocks

1-156

[2] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current regulator." IEEE
Transactions on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.

[3] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-
Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall
2014.

[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue
3, May/June 2000, pp. 817-825.

[5] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

[6] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp.
42-50.

[7] TI Application Note, "Sensorless-FOC With Flux-Weakening and MTPA for IPMSM Motor Drives."

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
PI Controller

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 MTPA Control Reference

1-157

Vector Control Reference
Compute d and q axis components of reference vector
Library: Motor Control Blockset / Controls / Control Reference

Description
The Vector Control Reference block calculates the d-axis and q-axis components of the reference
voltage, current, or flux vector that you provide as an input to the block.

The block accepts magnitude and position of the reference vector as inputs. The block outputs the
reference vector components along the direct and quadrature axes of the rotating dq reference
frame.

Equations

The block uses these equations to compute the d-axis and q-axis vector component outputs.

dref = magref × cosθe

qref = magref × sinθe

where:

• dref is the d-axis component of the reference vector.
• qref is the q-axis component of the reference vector.
• magref is the magnitude of the reference vector.
• θe is the electrical position of the reference vector.

Ports
Input

magref — Magnitude of reference vector
scalar

Magnitude of the reference voltage, current, or flux vector that you provide as an input to the block.
Data Types: single | double | fixed point

θe — Electrical position of reference vector
scalar

Electrical position of the reference voltage, current, or flux vector that you provide as an input to the
block.

1 Blocks

1-158

Data Types: single | double | fixed point

Output

dref — d-axis component of reference vector
scalar

Reference voltage, current, or flux vector component along the direct axis of the rotating dq
reference frame.
Data Types: single | double | fixed point

qref — q-axis component of reference vector
scalar

Reference voltage, current, or flux vector component along the quadrature axis of the rotating dq
reference frame.
Data Types: single | double | fixed point

Parameters
Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

Theta units — Unit of input position value
Per-unit (default) | Radians | Degrees

Unit of the input electrical position of the reference voltage, current, or flux vector.

Number of data points for trigonometric lookup table — Size of lookup table array
1024 (default) | scalar

Size of the lookup table array.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Speed Measurement | MTPA Control Reference

 Vector Control Reference

1-159

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-160

Average-Value Inverter
Compute three-phase AC voltage from inverter DC voltage
Library: Motor Control Blockset / Electrical Systems / Inverters

Description
The Average-Value Inverter block models an average-value and full-wave inverter. It computes the
three-phase AC voltage output from inverter DC voltage by using the duty cycle information.

Equations

These equations describe how the block computes the three-phase AC voltage.

D0 =
(Da + Db + Dc)

3

Va = Vdc × (Da− D0)

Vb = Vdc × (Db− D0)

Vc = Vdc × (Dc− D0)

where:

• Da, Db, and Dc are the modulation indices ranging between 0 and 1.
• Vdc is the DC bus voltage of the inverter (Volts).
• Va, Vb, and Vc are the output three-phase voltages (Volts).

Ports
Input

Dabc — Duty cycle for three-phase voltage
scalar

Three-phase modulation indices in the range [0,1] for generating voltages that run the motor.
Data Types: single | double | fixed point

Vdc — Inverter DC voltage
scalar

DC bus voltage input to the inverter.
Data Types: single | double | fixed point | uint8 | uint16 | uint32

 Average-Value Inverter

1-161

Output

Vabc — Three-phase voltage output
scalar

Three-phase voltage (Volts) corresponding to the input duty cycle that runs the motor.
Data Types: single | double | fixed point

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Space Vector Generator | Induction Motor | Interior PMSM | Surface Mount PMSM

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-162

Host Serial Receive
Configure host-side serial communications interface to receive data from serial port
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Receive block specifies the configuration of the data that it receives from the target
hardware.

The data package that the block receives is limited to 16 bytes of ASCII characters, including
package headers and terminators. Calculate the size of a package by including the package header, or
terminator, or both, and the data size. This table shows the number of bytes in each data type.

Data Type Byte Count
single 4 bytes
int8 and uint8 1 byte
int16 and uint16 2 bytes
int32 and uint32 4 bytes

For example, if your data package has a package header 'S' (1 byte) and package terminator 'E' (1
byte), that leaves 14 bytes for the actual data. If your data is of type int8, there is space in the data
package for 14 int8s. If your data is of type uint16, there is space in the data package for 7
uint16s. If your data is of type int32, there is space in the data package for only 3 int32s, with 2
bytes left over. Even though you could fit two int8s or one uint16 in the remaining space, you
should not, because you cannot mix data types in the same package.

The number of data types that can fit into a data package determine the data size. In the preceding
example, the data size is 14 for int8 and 7 for uint16. When the data size exceeds 16 bytes,
unexpected behavior, including run-time errors, are likely to occur.

Ports
Output

data — Port to output received data
scalar

A first in, first out (FIFO) buffer receives the data. At every time step, the data port outputs the
requested values from the buffer.
Data Types: single | int8 | uint8 | int16 | uint16 | int32 | uint32

status — Transaction status
scalar

 Host Serial Receive

1-163

The status of the transaction. The status can be one of the following values:

• 0 — No errors
• 1 — A timeout occurred when the block was waiting to receive data
• 2 — There is an error in the received data (checksum error)
• 3 — SCI parity error flag — Occurs when a character is received with a mismatch
• 4 — SCI framing error flag — Occurs when an expected stop bit is not found

Dependencies

To enable this port, select the Output receiving status parameter.
Data Types: uint16

Parameters
Serial Connection — Serial port used for receiving data
Serial 1 (default) | Serial 2 | Serial 3 | Serial 4

Specify a serial port to receive communication from the target hardware. Select an available serial
port from the list. You can configure the selected port using the Host Serial Setup block. If you do not
configure a serial port, the block prompts you to do so. Each Host Serial Receive block must have a
configured serial port. If you use multiple ports in your simulation, you must configure each port
separately.

Additional package header — Package header data
'S' (default) | scalar

Specifies the data located at the front of the received data package, which is not part of the data
being received, and generally indicates start of data. The additional package header must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around the text that you enter in this field, but the quotes are not received and they are not
included in the total byte count.

Additional package terminator — Package terminator data
'E' (default) | scalar

Specifies the data located at the end of the received data package, which is not part of the data being
received, and generally indicates end of data. The additional package terminator must be an ASCII
value. You can use a text value or a numeric value in the range (0–255). You must put single quotes
around text entered in this field, but the quotes are not received and they are not included in the total
byte count.

Data type — Output data type
single (default) | int8 | uint8 | int16 | uint16 | int32 | uint32

Specifies the data type of the block output.

Data size — Output data size
1 (default) | scalar | matrix

Specifies the output data size or the number of values that should be read at every simulation time
step.

1 Blocks

1-164

Initial output — Default block output value
0 (default) | scalar

Specifies the initial or default output value of the block. This value is used, for example, if a
connection timeout occurs and the Action taken when connection times out parameter is set to
Output the last received value, but the block has not received any value yet.

Action taken when connection times out — Action taken by block when connection
times out
Output the last received value (default) | Output custom value | Error

Specifies what to output if a connection timeout occurs.

• Output the last received value — The block outputs the value received at the preceding
time step. If the block did not receive a value previously, it outputs the value of the Initial output
parameter.

• Output custom value — The block outputs a user-defined value. Use the Output value when
connection times out parameter to define this custom value.

• Error — The block outputs an error.

Output value when connection times out — Output custom value when the connection
times out
0 (default) | scalar

Specifies a custom value that the block outputs when a connection timeout occurs.

Dependencies

To enable this parameter, set Action taken when connection times out to either Output custom
value or Error.

Sample time — Sample time for block execution
-1 (default) | scalar

Determines how often the Host Serial Receive block is called (in seconds). When you set this value to
-1, the model inherits the sample time of the model. To execute this block asynchronously, set
Sample time to -1.

Output receiving status — Enable status output port
off (default) | on

Select this parameter to enable the status output port that provides the status of the transaction. If
you clear this parameter, the block hides the status port.

Enable blocking mode — Block simulation while receiving data
on (default) | off

Select this parameter to block the simulation while receiving data. Clear this parameter if you do not
want the read operation to block the simulation.

If you enable the blocking mode, the model blocks the simulation while it is waiting to receive the
requested data. When you do not enable the blocking mode, the simulation runs continuously.

 Host Serial Receive

1-165

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Setup | Host Serial Transmit

1 Blocks

1-166

Host Serial Setup
Configure communication ports used by Host Serial Receive and Host Serial Transmit blocks
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Setup block is a standalone block that standardizes the serial communication (COM)
port settings used by the Host Serial Receive and Host Serial Transmit blocks.

Setting the COM port configurations globally by using the Host Serial Setup block avoids conflicts.
For example, the Host Serial Transmit block cannot use a COM1 port with settings different than
those on the COM1 port of the Host Serial Receive block. You need to set the port configurations only
once for each COM port.

Parameters
Port name — Port that you want to configure
'Please_select_a_port' (default) | 'COM3'

Select an available serial port that you want to configure. By default no port is selected and this field
displays 'Please_select_a_port'. Use a configured port in the Host Serial Transmit and Host
Serial Receive blocks. Both transmit and receive blocks must use a serial port that you configure
using the Host Serial Setup block.

Baud rate — Baud rate for serial communication
115200 (default) | scalar

Enter the rate at which the model transmits the bits through the serial interface.

Number of stop bits — Number of stop bits
1 (default) | 2

Enter the number of bits that the model uses to indicate the end of a byte.

Parity mode — Method used to check parity bits
none (default) | odd | even

Specify how you want to check parity bits in the data bits that the model transmits through the serial
port.

• none — Model does not perform parity check.
• odd — Model sets the parity bit to 0 if the number of ones in a given set of bits is even.
• even — Model sets the parity bit to 1 if the number of ones in a given set of bits is odd.

Timeout — Time interval before a one-way communication times out
1.0 (default) | scalar

 Host Serial Setup

1-167

Enter values greater than or equal to zero (seconds). When the COM port involved is using the
protocol mode, this value indicates how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for data.

The system displays a warning message every n number of seconds, when the transmit or receive
block exceeds the Timeout value of n seconds.

Byte order — Byte order for serial communication
LittleEndian (default) | BigEndian

Specify the byte order as either LittleEndian or BigEndian. If byte order is LittleEndian, the
model stores the first byte in the first memory address. If byte order is BigEndian, the model stores
the last byte in the first memory address. You should configure the byte order to an appropriate value
before performing a read or write operation.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Receive | Host Serial Transmit

1 Blocks

1-168

Host Serial Transmit
Configure host-side serial communications interface to transmit data to serial port
Library: Motor Control Blockset / Protection and Diagnostics

Description
The Host Serial Transmit block specifies the configuration of the data that it transmits to the target
hardware.

The data package that the block sends is limited to 16 bytes of ASCII characters, including package
headers and terminators. Calculate the size of a package by including the package header, or
terminator, or both, and the data size. This table shows the number of bytes in each data type.

Data Type Byte Count
single 4 bytes
int8 and uint8 1 byte
int16 and uint16 2 bytes
int32 and uint32 4 bytes

For example, if your data package has a package header 'S' (1 byte) and package terminator 'E' (1
byte), that leaves 14 bytes for the actual data. If your data is of type int8, there is space in the data
package for 14 int8s. If your data is of type uint16, there is space in the data package for 7
uint16s. If your data is of type int32, there is space in the data package for only 3 int32s, with 2
bytes left over. Even though you could fit two int8s or one uint16 in the remaining space, you
should not, because you cannot mix data types in the same package.

The number of data types that can fit into a data package determine the data size. In the preceding
example, the data size is 14 for int8 and 7 for uint16. When the data size exceeds 16 bytes,
unexpected behavior, including run-time errors, are likely to occur.

Ports
Input

data — Port to receive data to be transmitted
scalar

This port accepts both one-dimensional and matrix data for transmission to the target hardware.
Data Types: single | int8 | uint8 | int16 | uint16 | int32 | uint32

 Host Serial Transmit

1-169

Parameters
Serial Connection — Serial port used for transmitting data
Serial 1 (default) | Serial 2 | Serial 3 | Serial 4

Specify a serial port to transmit to the target hardware. Select an available serial port from the list.
You can configure the selected port using the Host Serial Setup block. If you do not configure a serial
port, the block prompts you to do so. Each Host Serial Transmit block must have a configured serial
port. If you use multiple ports in your simulation, you must configure each port separately.

Additional package header — Package header data
'S' (default) | scalar

Specifies the data located at the front of the transmitted data package, which is not part of the data
being transmitted, and generally indicates start of data. The additional package header must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around the text that you enter in this field, but the quotes are not transmitted and they are not
included in the total byte count.

Additional package terminator — Package terminator data
'E' (default) | scalar

Specifies the data located at the end of the transmitted data package, which is not part of the data
being transmitted, and generally indicates end of data. The additional package terminator must be an
ASCII value. You can use a text value or a numeric value in the range (0–255). You must put single
quotes around text entered in this field, but the quotes are not transmitted and they are not included
in the total byte count.

Enable blocking mode — Block simulation while sending data
off (default) | on

Select this parameter to block the simulation while transmitting data. Clear this parameter if you do
not want the write operation to block the simulation.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Host Serial Setup | Host Serial Receive

1 Blocks

1-170

Flux Observer
Compute electrical position, magnetic flux, and electrical torque of rotor
Library: Motor Control Blockset / Sensorless Estimators

Description
The Flux Observer block computes the electrical position, magnetic flux, and electrical torque of a
PMSM or an induction motor by using the per unit voltage and current values along the α- and β-axes
in the stationary αβ reference frame.

Equations

These equations describe how the block computes the electrical position, magnetic flux, and
electrical torque for a PMSM.

ψα = ∫ (Vα− IαR)dt − Ls ⋅ Iα

ψβ = ∫ (Vβ− IβR)dt − Ls ⋅ Iβ

ψ = ψα
2 + ψβ

2

Te = 3
2P(ψαIβ− ψβIα)

θe = tan−1 ψβ
ψα

These equations describe how the block computes the rotor electrical position, rotor magnetic flux,
and electrical torque for an induction motor.

ψα =
Lr
Lm

 ∫ (Vα− IαR)dt − σLsIα

ψβ =
Lr
Lm

 ∫ (Vβ− IβR)dt − σLsIβ

 Flux Observer

1-171

σ = 1 −
Lm

2

Lr ⋅ Ls

ψ = ψα
2 + ψβ

2

Te = 3
2 ⋅ P ⋅

Lm
Lr

(ψαIβ− ψβIα)

θe = tan−1 ψβ
ψα

where:

• Vα and Vβ are the α-axis and β-axis voltages (Volts).
• Iα and Iβ are the α-axis and β-axis current (Amperes).
• R is the stator resistance of the motor (Ohms).
• Ls is the stator inductance of the motor (Henry).
• Lr is the rotor inductance of the motor (Henry).
• Lm is the magnetizing inductance of the motor (Henry).
• σ is the total leakage factor of the induction motor.
• P is the number of motor pole pairs.
• ψ is the rotor magnetic flux (Weber).
• ψα and ψβ are the rotor magnetic fluxes along the α- and β-axes (Weber).
• Te is the electrical torque of the rotor (Nm).
• θe is the electrical position of the rotor (Radians).

Ports
Input

Vα — α-axis voltage
scalar

Voltage component along the α-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Vβ — β-axis voltage
scalar

Voltage component along the β-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Current along the α-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

1 Blocks

1-172

Iβ — β-axis current
scalar

Current along the β-axis in the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset block
scalar

The pulse (true value) that resets the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of motor
scalar

The electrical position of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Position.
Data Types: single | double | fixed point

Ψ — Rotor flux of motor
scalar

The magnetic flux of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Flux.
Data Types: single | double | fixed point

Te — Electrical torque of motor
scalar

The electrical torque of the rotor as estimated by the block.

Dependencies

To enable this port, set Block output to Torque.
Data Types: single | double | fixed point

Parameters
Motor parameters

Motor selection — Type of motor
PMSM (default) | ACIM

Select the type of motor that the block supports.

 Flux Observer

1-173

Input units — Unit of voltage and current inputs
SI unit (default) | Per-unit

Select the unit of the α and β-axes voltage and current input values.

Block output — Select outputs that block should compute
Position (default) | Flux | Torque

Select one or more quantities that the block should compute and display in the block output.

Note You must select at least one value. The block displays an error message if you click Ok or
Apply without selecting any value.

Pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.
Dependencies

To enable this parameter, set Block output to Torque.

Stator resistance (ohm) — Stator winding resistance
0.36 (default) | scalar

Stator phase winding resistance of the motor in ohms.

Stator d-axis inductance (H) — Stator winding inductance along d-axis
0.2e-3 (default) | scalar

Stator winding inductance of the motor along d-axis in Henry.
Dependencies

To enable this parameter, set Motor selection to PMSM.

Stator leakage inductance (H) — Leakage inductance of stator winding
0.0068 (default) | scalar

Leakage inductance of the induction motor stator winding in Henry.
Dependencies

To enable this parameter, set Motor selection to ACIM.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
0.0068 (default) | scalar

Leakage inductance of the induction motor rotor winding in Henry.
Dependencies

To enable this parameter, set Motor selection to ACIM.

Magnetizing inductance (H) — Magnetizing inductance of induction motor
0.0300 (default) | scalar

1 Blocks

1-174

Magnetizing inductance of the induction motor in Henry.

Dependencies

To enable this parameter, set Motor selection to ACIM.

Cutoff frequency (Hz) — Cutoff frequency of internal high-pass filter
3.1863 (default) | scalar

Cutoff frequency of the internal high-pass filter (that filters noise) in Hertz.

The Flux Observer block uses an internal first order IIR high-pass filter. You should set the Cutoff
frequency (Hz) for this filter to a value that is lower than the lowest frequency corresponding to the
minimum speed of the motor. For example, you can enter a value that is one-tenth of the lowest
electrical frequency of the stator voltages and the currents. However, you can adjust this value to
determine a more accurate cutoff frequency that generates the desired block output.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval in seconds between two consecutive instances of block execution.

Datatypes

Position unit — Unit of electrical position output
Radians (default) | Degrees | Per-unit

Unit of the electrical position output.

Dependencies

To enable this parameter, set Block output to Position.

Position datatype — Data type of electrical position output
single (default) | double | fixed point

Data type of the electrical position output.

Dependencies

To enable this parameter, set Block output to Position.

Flux unit — Unit of magnetic flux output
Weber (default) | Per-unit

Unit of the magnetic flux output.

Dependencies

To enable this parameter, set Block output to Flux.

Flux datatype — Data type of magnetic flux output
single (default) | double | fixed point

Data type of the magnetic flux output.

 Flux Observer

1-175

Dependencies

To enable this parameter, set Block output to Flux.

Torque unit — Unit of electrical torque output
Nm (default) | Per-unit

Unit of the electrical torque output.

Dependencies

To enable this parameter, set Block output to Torque.

Torque datatype — Data type of electrical torque output
single (default) | double | fixed point

Data type of the electrical torque output.

Dependencies

To enable this parameter, set Block output to Torque.

Version History
Introduced in R2020a

References
[1] O. Sandre-Hernandez, J. J. Rangel-Magdaleno and R. Morales-Caporal, "Simulink-HDL

cosimulation of direct torque control of a PM synchronous machine based FPGA," 2014 11th
International Conference on Electrical Engineering, Computing Science and Automatic
Control (CCE), Campeche, 2014, pp. 1-6. (doi: 10.1109/ICEEE.2014.6978298)

[2] Y. Inoue, S. Morimoto and M. Sanada, "Control method suitable for direct torque control based
motor drive system satisfying voltage and current limitations," The 2010 International Power
Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 3000-3006. (doi: 10.1109/
IPEC.2010.5543698)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Sliding Mode Observer | Clarke Transform | Inverse Park Transform | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-176

Interior PMSM
Three-phase interior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Interior PMSM block implements a three-phase interior permanent magnet synchronous motor
(PMSM) with sinusoidal back electromotive force. The block uses the three-phase input voltages to
regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

On the Parameters tab, if you select Back-emf, the block implements this equation to calculate the
permanent flux linkage constant.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

 Interior PMSM

1-177

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux
with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θr
is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All
quantities in the motor reference frame are referred to the stator.

ωe = Pωm

d
dt id = 1

Ld
vd−

R
Ld

id +
Lq
Ld

Pωmiq

d
dt iq = 1

Lq
vq−

R
Lq

iq−
Ld
Lq

Pωmid−
λpmPωm

Lq

Te = 1.5P[λpmiq + (Ld− Lq)idiq]

The Lq and Ld inductances represent the relation between the phase inductance and the motor
position due to the saliency of the motor.

The equations use these variables.

Lq, Ld q- and d-axis inductances (H)
R Resistance of the stator windings (ohm)
iq, id q- and d-axis currents (A)
vq, vd q- and d-axis voltages (V)

1 Blocks

1-178

ωm Angular mechanical velocity of the motor (rad/s)
ωe Angular electrical velocity of the motor (rad/s)
λpm Permanent flux linkage constant (Wb)
Ke Back electromotive force (EMF) (Vpk_LL/krpm, where Vpk_LL is the peak voltage

line-to-line measurement)
P Number of pole pairs
Te Electromagnetic torque (Nm)
Θe Electrical angle (rad)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

• Positive signals indicate an
input

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − 3
2 (Rsisd

2

+ Rsisq
2)

 Interior PMSM

1-179

Bus Signal Description Variab
le

Equations

• Negative signals indicate a
loss

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the rotor (rad/s)
F Combined motor and load viscous damping (N·m/(rad/s))
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Amplitude invariant dq transformation

The block uses these equations to implement amplitude invariant dq transformation to ensure that
the dq and three phase amplitudes are equal.

vsd
vsq

= 2
3

cos(Θda) cos(Θda−
2π
3) cos(Θda + 2π

3)

−sin(Θda) −sin(Θda−
2π
3) −sin(Θda + 2π

3)

va
vb
vc

ia
ib
ic

=

cos(Θda) −sin(Θda)

cos(Θda−
2π
3)

cos(Θda + 2π
3)

−sin(Θda−
2π
3)

−sin(Θda + 2π
3)

isd
isq

The equations use these variables.

1 Blocks

1-180

Θda dq stator electrical angle with respect to the rotor a-axis (rad)
vsq, vsd Stator q- and d-axis voltages (V)
isq, isd Stator q- and d-axis currents (A)
va, vb, vc Stator voltage phases a, b, c (V)
ia, ib, ic Stator currents phases a, b, c (A)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.

Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd — Motor shaft speed
scalar

Angular velocity of the motor, ωm, in rad/s.

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Dependencies

To create this port, select Speed or Torque for the Port Configuration parameter.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V

 Interior PMSM

1-181

Signal Description Variable Units
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

motor
ωm rad/s

MtrPos Motor mechanical angular position θm rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElecL
oss

Resistive power loss Pelec W

PwrMechL
oss

Mechanical power loss Pmech W

PwrStored PwrMtrSt
ored

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.

Dependencies

To create this port, select Speed for the Mechanical input configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

Dependencies

To create this port, select Torque for the Mechanical input configuration parameter.

Parameters
Block Options

Mechanical input configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd

1 Blocks

1-182

Port Configuration Creates Input Port Creates Output Port
Speed Spd MtrTrq

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Sample Time (Ts) — Sample time for discrete integration
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Load Parameters

File — Path to motor parameter ".m" or ".mat" file
file name

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs (P) — Pole pairs
4 (default) | scalar

Motor pole pairs, P.

Stator phase resistance per phase (Rs) — Resistance
0.02 (default) | scalar

Stator phase resistance per phase, Rs, in ohm.

 Interior PMSM

1-183

Stator d-axis and q-axis inductance (Ldq) — Inductance
[1.7e-3 3.2e-3] (default) | vector

Stator d-axis and q-axis inductance, Ld, Lq, in H.

Permanent flux linkage constant (lambda_pm) — Flux
0.2205 (default) | scalar

Permanent flux linkage constant, λpm, in Wb.

Back-emf constant (Ke) — Back electromotive force
scalar

Back electromotive force, EMF, Ke, in Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line
measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Physical inertia, viscous damping, and static friction (mechanical) — Inertia,
damping, friction
[0.002700,4.924e-4,0] (default) | vector

Mechanical properties of the motor:

• Inertia, J, in kg.m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current
[0 0] (default) | vector

Initial q- and d-axis currents, iq, id, in A.

Initial mechanical position (theta_init) — Angle
0 (default) | scalar

Initial motor angular position, θm0, in rad.

Initial mechanical speed (omega_init) — Speed
0 (default) | scalar

Initial angular velocity of the motor, ωm0, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

1 Blocks

1-184

Version History
Introduced in R2017a

References
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool”

 Interior PMSM

1-185

Surface Mount PMSM
Three-phase exterior permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Surface Mount PMSM block implements a three-phase exterior permanent magnet synchronous
motor (PMSM) with sinusoidal back electromotive force. The block uses the three-phase input
voltages to regulate the individual phase currents, allowing control of the motor torque or speed.

By default, the block sets the Simulation type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

On the Parameters tab, if you select Back-emf or Torque constant, the block implements one of
these equations to calculate the permanent flux linkage constant.

Setting Equation
Back-emf

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Torque constant
λpm = 2

3 ⋅
Kt
P

Motor Construction

This figure shows the motor construction with a single pole pair on the motor.

1 Blocks

1-186

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux
with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θr
is zero.

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All
quantities in the motor reference frame are referred to the stator.

ωe = Pωm

d
dt id = 1

Ld
vd−

R
Ld

id +
Lq
Ld

Pωmiq

d
dt iq = 1

Lq
vq−

R
Lq

iq−
Ld
Lq

Pωmid−
λpmPωm

Lq

Te = 1.5P[λpmiq + (Ld− Lq)idiq]

The Lq and Ld inductances represent the relation between the phase inductance and the motor
position due to the saliency of the motor magnets. For the surface mount PMSM, Ld = Lq.

The equations use these variables.

Lq, Ld q- and d-axis inductances (H)
R Resistance of the stator windings (ohm)
iq, id q- and d-axis currents (A)
vq, vd q- and d-axis voltages (V)

 Surface Mount PMSM

1-187

ωm Angular mechanical velocity of the motor (rad/s)
ωe Angular electrical velocity of the motor (rad/s)
λpm Permanent magnet flux linkage (Wb)
Ke Back electromotive force (EMF) (Vpk_LL/krpm, where Vpk_LL is the peak voltage

line-to-line measurement)
Kt Torque constant (N·m/A)
P Number of pole pairs
Te Electromagnetic torque (Nm)
Θe Electrical angle (rad)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − 3
2 (Rsisd

2

+ Rsisq
2)

1 Blocks

1-188

Bus Signal Description Variab
le

Equations

• Positive signals indicate an
input

• Negative signals indicate a
loss

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the motor (rad/s)
F Combined motor and load viscous damping N·m/(rad/s)
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.
Dependencies

To create this port, select Torque for the Port Configuration parameter.

Spd — Motor shaft speed
scalar

Angular velocity of the motor, ωm, in rad/s.

 Surface Mount PMSM

1-189

Dependencies

To create this port, select Speed for the Port Configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

motor
ωm rad/s

MtrPos Motor mechanical angular position θm rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElecLo
ss

Resistive power loss Pelec W

PwrMechLo
ss

Mechanical power loss Pmech W

PwrStored PwrMtrSto
red

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.

1 Blocks

1-190

Dependencies

To create this port, select Speed for the Mechanical input configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

Dependencies

To create this port, select Torque for the Mechanical input configuration parameter.

Parameters
Block Options

Mechanical input configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd
Speed Spd MtrTrq

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Sample Time (Ts) — Sample time for discrete integration
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting Simulation type to Discrete creates the Sample Time, Ts parameter.

Load Parameters

File — Path to motor parameter ".m" or ".mat" file
file name

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

 Surface Mount PMSM

1-191

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs (P) — Pole pairs
4 (default) | scalar

Motor pole pairs, P.

Stator phase resistance per phase (Rs) — Resistance
0.02 (default) | scalar

Stator phase resistance per phase, Rs, in ohm.

Stator d-axis inductance (Ldq_) — Inductance
1.7e-3 (default) | scalar

Stator inductance, Ldq, in H.

Permanent flux linkage constant (lambda_pm) — Flux
0.2205 (default) | scalar

Permanent flux linkage constant, λpm, in Wb.

Back-emf constant (Ke) — Back electromotive force
scalar

Back electromotive force, EMF, Ke, in peak Vpk_LL/krpm. Vpk_LL is the peak voltage line-to-line
measurement.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 1
3 ⋅

Ke
1000P ⋅

60
2π

Torque constant (Kt) — Torque constant
scalar

Torque constant, Kt, in N·m/A.

To calculate the permanent flux linkage constant, the block implements this equation.

λpm = 2
3 ⋅

Kt
P

1 Blocks

1-192

Physical inertia, viscous damping, and static friction (mechanical) — Inertia,
damping, friction
[0.002700,4.924e-4,0] (default) | vector

Mechanical properties of the motor:

• Inertia, J, in kg.m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select the Torque configuration parameter.

Initial Values

Initial d-axis and q-axis current (idq0) — Current
[0 0] (default) | vector

Initial q- and d-axis currents, iq, id, in A.

Initial mechanical position (theta_init) — Angle
0 (default) | scalar

Initial motor angular position, θm0, in rad.

Initial mechanical speed (omega_init) — Speed
0 (default) | scalar

Initial angular velocity of the motor, ωm0, in rad/s.

Dependencies

To enable this parameter, select the Torque configuration parameter.

Version History
Introduced in R2017a

References
[1] Kundur, P. Power System Stability and Control. New York, NY: McGraw Hill, 1993.

[2] Anderson, P. M. Analysis of Faulted Power Systems. Hoboken, NJ: Wiley-IEEE Press, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Surface Mount PMSM

1-193

See Also
Topics
“Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool”

1 Blocks

1-194

Field Oriented Control Autotuner
Automatically and sequentially tune multiple PID control loops in field-oriented control application
Library: Motor Control Blockset / Controls / Controllers

Description
The Field Oriented Control Autotuner block allows you to automatically tune PID control loops in your
field-oriented control (FOC) application in real time. For more information on field-oriented control,
see “Field-Oriented Control (FOC)”.

You can automatically tune PID controllers associated with the following loops:

• Direct-axis (d-axis) current loop
• Quadrature-axis (q-axis) current loop
• Speed loop
• Flux loop

For each loop the block tunes, the Field Oriented Control Autotuner block performs the autotuning
experiment in closed-loop without a parametric model associated with that loop. The block allows you
to specify the order in which the control loops are tuned. When the tuning experiment is running for
one loop, the block has no effect on the other loops. During the experiment, the block:

1 Injects a test signal into the plant associated with that loop to collect plant input-output data and
estimate frequency response in real time. The test signal is combination of sinusoidal
perturbation signals added on top of the plant input.

2 At the end of the experiment, tunes PID controller parameters based on estimated plant
frequency responses near the target bandwidth.

3 Writes updated PID gains at the block output, allowing you to transfer the new gains to existing
controllers and validate the closed-loop performance.

You can use the Field Oriented Control Autotuner block to tune the existing PID controllers in your
FOC structure. If you do not have the initial PID controllers, you can use the “Estimate Control Gains
and Use Utility Functions” workflow to obtain them. You can then use the Field Oriented Control
Autotuner block for refinement or retuning.

If you have a code-generation product such as Simulink Coder™, you can generate code that
implements the tuning algorithm on hardware, letting you tune in real time, using or without using
Simulink to manage the autotuning process.

If you have a machine modeled in Simulink with Motor Control Blockset and an initial FOC structure
with PID controllers, you can perform closed-loop PID autotuning against the modeled machine.
Doing so lets you preview the plant response and adjust the settings for PID autotuning before tuning
the controller in real time.

 Field Oriented Control Autotuner

1-195

The block supports code generation with Simulink Coder, Embedded Coder®, and Simulink PLC
Coder™. It does not support code generation with HDL Coder. For real-time applications, deploy the
generated code on a rapid prototyping hardware such as Speedgoat® real-time target machine.

For more information about using the Field Oriented Control Autotuner block, see “How to Use Field
Oriented Control Autotuner Block”.

This block requires Simulink Control Design software.

Ports
Input

PIDout_daxis — Signal from direct-axis current controller
scalar

This port accepts the output of the d-axis controller PID_daxis, which is the output of PID controller
that regulates the d-axis current of the motor. The controller generates the d-axis voltage reference
Vd_ref, while the FOC autotuner block generates perturbations used during the tuning experiment
for the d-axis current loop.

Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

measured feedback_daxis — Measured direct-axis current
scalar

This port accepts the d-axis current obtained from the measured (sensed or estimated) motor
currents.
Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

PIDout_qaxis — Signal from quadrature-axis current controller
scalar

This port accepts the output of the q-axis controller PID_qaxis, which is the output of PID controller
that regulates the q-axis current of the motor. The controller generates the q-axis voltage reference
Vq_ref, while the FOC autotuner block generates perturbations used during the tuning experiment
for the q-axis current loop.

1 Blocks

1-196

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

measured feedback_qaxis — Measured quadrature-axis current
scalar

This port accepts the q-axis current obtained from the measured (sensed or estimated) motor
currents.

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

PIDout_spd — Signal from speed controller
scalar

This port accepts the output of the speed controller PID_speed, which is the output of PID controller
that regulates the speed of the motor. The controller generates the q-axis current reference Iq_ref,
while the FOC autotuner block generates perturbations used during the tuning experiment for the
speed loop.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

measured feedback_spd — Measured speed
scalar

 Field Oriented Control Autotuner

1-197

This port accepts the measured (sensed or estimated) speed from the motor.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

PIDout_flux — Signal from flux controller
scalar

This port accepts the output of the flux controller PID_flux, which is the output of PID controller
that regulates the flux of the motor. The controller generates the d-axis current reference Id_ref,
while the FOC autotuner block generates perturbations used during the tuning experiment for the
flux loop.

For a permanent magnet synchronous motor (PMSM), there is no flux loop controller as the rotor flux
is fixed and Id_ref is set to zero. In some applications you can provide a negative Id_ref value to
implement field-weakening control and achieve higher rotor speeds at the cost of a higher current.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

measured feedback_flux — Measured flux
scalar

This port accepts the measured (sensed or estimated) flux from the motor.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

start/stop — Start and stop autotuning experiment
scalar

To externally start and stop the autotuning process, provide a signal at the start/stop port and the
ActiveLoop port.

• The experiment starts when the value of the signal changes from negative or zero to positive.

1 Blocks

1-198

• The experiment stops when the value of the signal changes from positive to negative or zero.

For the duration of the experiment, for each loop, the block injects sinusoidal perturbations at the
plant input associated with the loop, near the nominal operating point, to collect input-output data
and estimate frequency response. When the experiment stops, the block computes PID gains based
on the plant frequency responses estimated near the target bandwidth.

When the experiment is not running, the block does not inject any perturbations at the plant inputs.
In this state, the block has no impact on plant or controller behavior.

Typically, you can use a signal that changes from 0 to 1 to start the experiment, and from 1 to 0 to
stop it. Consider the following when you configure the start/stop signal.

• Start the experiment when the motor is at the desired equilibrium operating point. Use the initial
controller to drive the motor to the operating point.

• Avoid any input or output disturbance on the motor during the experiment. If your existing closed-
loop system has good disturbance rejection, then the experiment can handle small disturbances.
Otherwise, large disturbances can distort the plant output and reduce the accuracy of the
frequency-response estimation.

• Let the experiment run long enough for the algorithm to collect sufficient data for a good estimate
at all frequencies it probes. There are two ways to determine when to stop the experiment:

• Determine the experiment duration in advance. A conservative estimate for the experiment
duration is 200/ωc in superposition experiment mode or 550/ωc in sinestream experiment
mode, where ωc is your target bandwidth.

• Observe the signal at the convergence output, and stop the experiment when the signal
stabilizes near 100%.

• When you stop the experiment, the block computes tuned PID gains and updates the signal at the
pid gains port.

You can configure any logic appropriate for your application to control the start and stop times of the
experiment. The start/stop signal is specified along with ActiveLoop. ActiveLoop takes integer
values 1 to 4 and specifies which loop to tune.

Alternatively, if you are tuning in simulation or external mode, you can specify the tuning experiment
sequence, start time and duration in the block parameters.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
start/stop of experiment.
Data Types: single | double

ActiveLoop — Specify active loop for autotuning experiment
scalar

Set the ActiveLoop value to specify which loop to tune when providing an external source for the
start and stop times of the tuning experiment.

ActiveLoop Value Loop to Tune
1 D-axis current loop

 Field Oriented Control Autotuner

1-199

ActiveLoop Value Loop to Tune
2 Q-axis current loop
3 Speed loop
4 Flux loop

You can configure any logic appropriate for your application along with the start/stop port to
control the sequence and the time at which the loop tuning experiment runs. ActiveLoop takes
integer values from 1 to 4 and specifies which loop to tune. Any other number will result in no tuning
taking place regardless of the start/stop signal. For example, when you supply a constant value 2
at ActiveLoop and the signal at start/stop rises, the block starts the tuning experiment for the q-
axis current loop.

Alternatively, you can specify the tuning experiment sequence, start time, and duration in the block
parameters.
Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
start/stop of experiment.
Data Types: single | double

bandwidth — Target bandwidth for tuning
scalar | vector | bus

Supply the values for the Target bandwidth (rad/sec) parameter for each loop to be tuned. If
you are tuning multiple loops, you can specify the bandwidth as a vector or bus, entries of which
correspond to the target bandwidth for the loops in this order:

• D-axis current loop
• Q-axis current loop
• Speed loop
• Flux loop

The vector signal must be specified as a N-by-1 or 1-by-N signal or if specified as a bus must have N
elements, where N is the number of loops to be tuned. For instance, if you are tuning the q-axis
current loop and the speed loop, and you specify a vector [5000, 200] at this port, the block tunes the
q-axis current controller with the target bandwidth 5000 rad/sec and the speed loop controller with
the target bandwidth 200 rad/sec.

If you are tuning multiple loops and specify a scalar value at this port, then the block uses the same
target bandwidth to tune all the controllers. For effective cascade control, the inner control loops (d-
axis and q-axis) must respond much faster than the outer control loops (flux and speed). Therefore,
you must supply the target bandwidth as a vector or bus signal when tuning multiple loops.

Alternatively, you can specify target bandwidth for individual loops in block parameters. For more
information on how to choose a bandwidth, see that parameter description.
Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
bandwidth.
Data Types: single | double

1 Blocks

1-200

target PM — Target phase margin for tuning
scalar | vector | bus

Supply a value for the Target phase margin (degrees) parameter for each loop to be tuned. If
you are tuning multiple loops, you can specify target PM as a vector or bus, entries of which
correspond to the target phase margin for the loops in this order:

• D-axis current loop
• Q-axis current loop
• Speed loop
• Flux loop

The vector signal must be specified as a N-by-1 or 1-by-N signal or if specified as a bus must have N
elements, where N is the number of loops to be tuned. For instance, if you are tuning q-axis current
loop and speed loop, and you specify a vector [60, 45] at this port, the block tunes q-axis current
controller with target phase margin 60 degrees and speed loop controller with target phase margin
45 degrees.

If you are tuning multiple loops and specify a scalar value at this port, then the block uses the same
target phase margin to tune all the controllers.

Alternatively, you can specify target phase margin for individual loops in block parameters. For more
information on how to choose a target phase margin, see that parameter description.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
target phase margin.
Data Types: single | double

sine Amp — Amplitudes of injected sinusoidal perturbation signals
vector | matrix

Supply a value for the Sine Amplitudes parameter for each loop to be tuned. Specify one of the
following:

• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc , where ωc is
the target bandwidth for tuning.

• N-by-5 matrix, where N is the number of loops to be tuned. Each row entry must be of length 5 to
specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc .

If you are tuning multiple loops and specify a vector of length 5 at this port, then the block uses the
specified amplitude for all the loops at each of [1/10, 1/3, 1, 3, 10]ωc corresponding to that loop.

Alternatively, you can specify the sinusoidal perturbation amplitude for individual loops in block
parameters. For more information, see the parameter description.

Dependencies

To enable this port, on the Block tab under Parameters Source, select Use external source for
sine amplitudes.
Data Types: single | double

 Field Oriented Control Autotuner

1-201

Output

perturbation_daxis — Direct-axis current input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
d-axis current control loop. Inject the perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the d-axis current.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune D-axis current loop.
Data Types: single | double

perturbation_qaxis — Quadrature-axis current input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
q-axis current control loop. Inject this perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the q-axis current.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune Q-axis current loop.
Data Types: single | double

perturbation_spd — Speed input perturbation
scalar

Perturbation signal input used for estimating the frequency-response data model associated with the
motor speed control loop. Inject this perturbation signal from this port by using a sum block with the
output of the PID controller that regulates the speed of the motor.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune speed loop.
Data Types: single | double

perturbation_flux — Flux input perturbation
scalar

1 Blocks

1-202

Perturbation signal input used for estimating the frequency-response data model associated with the
motor flux control loop. Inject this perturbation signal from this port by using a sum block to the
output of the PID controller that regulates the flux linkage of the motor.

• When the experiment is running, the block generates perturbation signals at this port.
• When the experiment is not running, the signal at this port is zero. In this state, the block has no
effect on the plant.

Dependencies

To enable this port, select Tune flux loop.
Data Types: single | double

pid gains — Tuned PID coefficients
bus

This 4-element bus signal contains the tuned PID gains P, I, D, and the filter coefficient N for each
control loop the block tunes. These values correspond to the P, I, D, and N parameters in the
expressions given in the Form parameter. Initially, the values are 0, 0, 0, and 100, respectively. The
block updates the values when the experiment ends. The bus signal corresponding to each loop the
block tunes always has four elements, even if you are not tuning a PIDF controller.
Data Types: single | double

convergence — Convergence of FRD estimation during experiment
scalar

The block uses perturbation signals to estimate the frequency response of the plant associated with
each loop at several frequencies around the target bandwidth for tuning. convergence indicates
how close to completion the estimation of the plant frequency response is. Typically, this value
quickly rises to about 90% after the experiment begins, and then gradually converges to a higher
value. Stop the experiment when it levels off near 100%.
Data Types: single | double

estimated PM — Estimated phase margin for most recently tuned loop
scalar

This port outputs the estimated phase margin achieved by the tuned controller for the most recently
tuned loop, in degrees. The block updates this value when the tuning experiment ends for each loop.
The estimated phase margin is calculated from the angle of G(jωc)C(jωc), where G is the estimated
plant for that loop, C is the tuned controller, and ωc is the crossover frequency (bandwidth). The
estimated phase margin might differ from the target phase margin specified by the Target phase
margin (degrees) parameter. It is an indicator of the robustness and stability achieved by the
tuned system.

• Typically, the estimated phase margin is near the target phase margin. In general, the larger the
value, the more robust is the tuned system, and the less overshoot there is.

• A negative phase margin indicates that the closed-loop system might be unstable.

Dependencies

To enable this port, on the Block tab, select Estimated phase margin achieved by tuned
controllers.

 Field Oriented Control Autotuner

1-203

Data Types: single | double

frd — Estimated frequency response for most recently tuned loop
vector

This port outputs the frequency-response data estimated by the experiment for most recently tuned
loop. Initially, the value at frd is [0, 0, 0, 0, 0]. During the experiment, the block injects signals at
frequencies [1/10, 1/3, 1, 3, 10]ωc, where ωc is the target bandwidth. At each sample time during the
experiment, the block updates frd with a vector containing the complex frequency response at each
of these frequencies. You can use the progress of the response as an alternative to convergence to
examine the convergence of the estimation. When the experiment stops, the block updates frd with
the final estimated frequency response used for computing the PID gains.

Dependencies

To enable this port, on the Block tab, select Plant frequency responses near bandwidth.
Data Types: single | double

nominal — Plant input and output at nominal operating point for most recently tuned loop
vector

This port outputs a vector containing the plant input and plant output for the most recently tuned
loop or the loop currently being tuned. These values are the plant input and output at the nominal
operating point at which the block performs the experiment.

Dependencies

To enable this port, on the Block tab, select Plant nominal input and output.
Data Types: single | double

loop startstops — Active loop
bus

This 4-element bus signal indicates whether the tuning experiment for each loop tuned by the block is
active or not. For each signal in the bus, the port outputs the logical value 1 (true) for the loop when
the tuning experiment is running. The value is logical 0 (false) when the experiment is over or has
not yet started. You can use this port to trigger updates of PID gains for individual loops.

Dependencies

To enable this port, on the Block tab, disable Use external source for start/stop of experiment
and select Start/stop of autotuning process.
Data Types: single | double

Parameters
Tune D-axis current loop — Enable d-axis current loop tuning
on (default) | off

Use this parameter to enable or disable d-axis current loop autotuning.

Programmatic Use
Block Parameter: TuneDaxisLoop

1 Blocks

1-204

Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune Q-axis current loop — Enable q-axis current loop tuning
on (default) | off

Use this parameter to enable or disable q-axis current loop autotuning.

Programmatic Use
Block Parameter: TuneQaxisLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune speed loop — Enable speed loop tuning
on (default) | off

Use this parameter to enable or disable speed loop autotuning.

Programmatic Use
Block Parameter: TuneSpeedLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Tune flux loop — Enable flux loop tuning
on (default) | off

Use this parameter to enable or disable flux loop autotuning.

Programmatic Use
Block Parameter: TuneSpeedLoop
Type: character vector
Values: 'on' | 'off'
Default: 'on'

Use same settings for current loop controllers (D-axis + Q-axis) — Enable same
tuning and experiment settings for direct-axis and quadrature-axis current loops
off (default) | on

Select this parameter to enable the same tuning and experiment settings for d-axis and q-axis current
loops. When enabled, the block uses the same controller settings, target bandwidth, phase margin,
and other experiment settings to tune d-axis and q-axis current loops.

Programmatic Use
Block Parameter: UseSameSettingsInner
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use same settings for outer loop controllers (Speed + Flux) — Enable same
tuning and experiment settings for speed and flux loops
off (default) | on

 Field Oriented Control Autotuner

1-205

Select this parameter to enable the same tuning and experiment settings for speed and flux loops.
When enabled, the block uses the same controller settings, target bandwidth, phase margin, and
other experiment settings to tune speed and flux loops.
Programmatic Use
Block Parameter: UseSameSettingsOuter
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Experiment sample time — Sample time of frequency response estimation experiment
–1 (default) | positive scalar

Specify the sample time of the frequency response estimation experiment performed by the block in
seconds.

By default, the experiment sample time is set to inherited (–1) and the block performs the frequency
response estimation experiment, for each loop, at the inherited sample time. Use this parameter to
specify a sample time for the frequency response estimation experiment that is different from the
tuning and PID gain calculation sample rates. For each loop that you tune, the frequency responses
are estimated at the sample time specified in this parameter.

When you specify different sample times for tuning, experiment, and loops, you can configure
Simulink to treat each block module rate as a separate task to enable multitasking execution for your
model. This multitasking mode helps improve performance on hardware. For more information, see
“Treat each discrete rate as a separate task”.
Programmatic Use
Block Parameter: TsExperiment
Type: scalar
Value positive scalar
Default: –1 (inherited)

Tuning Tab

Use different sample time for tuning — Enable tuning at different sample time from
loop PID controller and experiment
off (default) | on

By default, the block runs tuning for each loop at the same sample time that you specify in the
Controller sample time (sec) parameter for that loop. Enable this parameter to run tuning at a
sample rate that is different from the sample rate of the PID controllers you are tuning and the
frequency response estimation experiment performed by the block. The PID gain tuning algorithm is
computationally intensive, and when you want to deploy the block to hardware and tune a controller
with a fast sample time, some hardware might not complete the PID gain calculation in a single time
step. To reduce the hardware throughput requirements, specify a tuning sample time slower than the
controller sample time using the Tuning sample time (sec) parameter.
Programmatic Use
Block Parameter: UseTuningTs
Type: character vector
Value 'off' | 'on'
Default: 'off'

Tuning sample time (sec) — Sample time of tuning algorithm
0.2 (default) | positive scalar

1 Blocks

1-206

Specify the sample time of the tuning algorithm in seconds.

If you intend to deploy the block on hardware with limited processing power and want to tune a
controller with a fast sample time, specify a sample time such that the tuning algorithm runs at a
slower rate than the PID controllers you are tuning. For each loop that you tune, after the frequency
response estimation experiment ends, controller tuning occurs at the sample time specified in this
parameter.
Dependencies

To enable this parameter, select Use different sample time for tuning.
Programmatic Use
Block Parameter: TsTuning
Type: scalar
Value positive scalar
Default: 0.2

D-axis Current Loop

Type — D-axis current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the d-axis current control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.
Programmatic Use
Block Parameter: PIDTypeDaxis
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — D-axis current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your d-axis current control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

 Field Oriented Control Autotuner

1-207

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormDaxis
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — D-axis current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the d-axis current control loop in
seconds. This parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsDaxis
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — D-axis current loop controller discrete integration formula for
integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

1 Blocks

1-208

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodDaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — D-axis current loop controller discrete integration formula for derivative
filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

 Field Oriented Control Autotuner

1-209

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.

Programmatic Use
Block Parameter: FilterMethodDaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — D-axis current loop target crossover frequency of tuned
response
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthDaxis
Type: positive scalar
Default: 100

1 Blocks

1-210

Target phase margin (degrees) — D-axis current loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the d-axis
current control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes
Programmatic Use
Block Parameter: TargetPMDaxis
Type: scalar
Values: 0–90
Default: 60

Q-axis Current Loop

Type — Q-axis current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the q-axis current control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.
Programmatic Use
Block Parameter: PIDTypeQaxis
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Q-axis current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your q-axis current control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

 Field Oriented Control Autotuner

1-211

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes
Programmatic Use
Block Parameter: PIDFormQaxis
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Q-axis current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the q-axis current control loop in
seconds. This parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.
Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.
Programmatic Use
Block Parameter: TsQaxis
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — Q-axis current loop controller discrete integration formula for
integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

1 Blocks

1-212

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodQaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Q-axis current loop controller discrete integration formula for derivative
filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

 Field Oriented Control Autotuner

1-213

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.

Programmatic Use
Block Parameter: FilterMethodQaxis
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Q-axis current loop target crossover frequency of tuned
response
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthQaxis

1 Blocks

1-214

Type: positive scalar
Default: 100

Target phase margin (degrees) — Q-axis current loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the q-axis
current control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMQaxis
Type: scalar
Values: 0–90
Default: 60

Speed Loop

Type — Speed loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the speed control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeSpeed
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Speed loop PID controller form
Parallel (default) | Ideal

 Field Oriented Control Autotuner

1-215

Specify the PID controller form associated with your speed control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormSpeed
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Speed loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the speed control loop in seconds. This
parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsSpeed
Type: scalar
Value positive scalar | –1

1 Blocks

1-216

Default: 0.1

Integrator method — Speed loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes integral action.
Programmatic Use
Block Parameter: IntegratorMethodSpeed
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Speed loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

 Field Oriented Control Autotuner

1-217

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodSpeed
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Speed loop target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

1 Blocks

1-218

Programmatic Use
Block Parameter: BandwidthSpeed
Type: positive scalar
Default: 1

Target phase margin (degrees) — Speed loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the speed
control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMSpeed
Type: scalar
Values: 0–90
Default: 60

Flux Loop

Type — Flux loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the flux control loop.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeFlux
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

 Field Oriented Control Autotuner

1-219

Form — Flux loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your flux control loop.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes

Programmatic Use
Block Parameter: PIDFormFlux
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Flux loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controller associated with the flux control loop in seconds. This
parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.

Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

1 Blocks

1-220

Programmatic Use
Block Parameter: TsFlux
Type: scalar
Value positive scalar | –1
Default: 0.1

Integrator method — Flux loop controller discrete integration formula for integrator term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodFlux
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Flux loop controller discrete integration formula for derivative filter term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

 Field Oriented Control Autotuner

1-221

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodFlux
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Flux loop target crossover frequency of tuned response
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

1 Blocks

1-222

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthFlux
Type: positive scalar
Default: 1

Target phase margin (degrees) — Flux loop target minimum phase margin
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop response associated with the flux
control loop at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMFlux
Type: scalar
Values: 0–90
Default: 60

Current Loops (Q-axis + D-axis)

Type — Current loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controller associated with the current control loops.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

Programmatic Use
Block Parameter: PIDTypeAllInner
Type: character vector

 Field Oriented Control Autotuner

1-223

Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Current loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your current control loops.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes
Programmatic Use
Block Parameter: PIDFormAllInner
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Current loop PID controller sample time
0.001 (default) | positive scalar | –1

Specify the sample time of your PID controllers associated with the current control loops in seconds.
This parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.
Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the
desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

1 Blocks

1-224

Programmatic Use
Block Parameter: TsAllInner
Type: scalar
Value positive scalar | –1
Default: 0.001

Integrator method — Current loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodAllInner
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Filter method — Current loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

 Field Oriented Control Autotuner

1-225

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodAllInner
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Current loop target crossover frequency of tuned
responses
100 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time
that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

1 Blocks

1-226

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthAllInner
Type: positive scalar
Default: 1

Target phase margin (degrees) — Current loop target minimum phase margins
60 (default) | scalar in range 0–90

Specify target minimum phase margin for the tuned open-loop responses associated with the current
control loops at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMAllInner
Type: scalar
Values: 0–90
Default: 60

Outer Loops (Speed + Flux)

Type — Outer loop PID controller actions
PI (default) | PID | PIDF | ...

Specify the type of PID controllers associated with the outer control loops.

The controller type indicates what actions are present in the controller that regulates the loop. The
following controller types are available for PID autotuning:

• P — Proportional only
• I — Integral only
• PI — Proportional and integral
• PD — Proportional and derivative
• PDF — Proportional and derivative with derivative filter
• PID — Proportional, integral, and derivative
• PIDF — Proportional, integral, and derivative with derivative filter

Make sure the controller type matches the controller that regulates the loop.

 Field Oriented Control Autotuner

1-227

Programmatic Use
Block Parameter: PIDTypeAllOuter
Type: character vector
Values: 'P' | 'I' | 'PI' | 'PD' | 'PDF' | 'PID' | 'PIDF'
Default: 'PI'

Form — Outer loop PID controller form
Parallel (default) | Ideal

Specify the PID controller form associated with your outer control loops.

The controller form determines the interpretation of the PID coefficients P, I, D, and N.

• Parallel — In Parallel form, the transfer function of a discrete-time PIDF controller is

C = P + IFi z + D N
1 + NFd z ,

where Fi(z) and Fd(z) are the integrator and filter formulas (see Integrator method and
Filter method).

Other controller actions amount to setting P, I, or D to zero.
• Ideal — In Ideal form, the transfer function of a discrete-time PIDF controller is

C = P 1 + IFi z + D N
1 + NFd z .

Other controller actions amount to setting D to zero or setting I to Inf. (In ideal form, the
controller must have proportional action.)

Make sure the controller form matches the controller that regulates the loop.

Tunable: Yes
Programmatic Use
Block Parameter: PIDFormAllOuter
Type: character vector
Values: 'Parallel' | 'Ideal'
Default: 'Parallel'

Controller sample time (sec) — Outer loop PID controller sample time
0.1 (default) | positive scalar | –1

Specify the sample time of your PID controllers associated with the outer control loop in seconds.
This parameter sets the sample time used to calculate the PID controller gains for the loop.

To perform PID tuning, the block measures frequency-response information up to a frequency of 10
times the target bandwidth. To ensure that this frequency is less than the Nyquist frequency, the
target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts ωc is the controller sample time that you
specify with the Controller sample time (sec) parameter.

Make sure the controller sample time matches the controller that regulates the loop.
Tips

If you want to run the deployed block with different sample times in your application, set this
parameter to –1 and put the block in a Triggered Subsystem. Then, trigger the subsystem at the

1 Blocks

1-228

desired sample time. If you do not plan to change the sample time after deployment, specify a fixed
and finite sample time.

Programmatic Use
Block Parameter: TsAllOuter
Type: scalar
Value positive scalar | –1
Default: 0.1

Integrator method — Outer loop controller discrete integration formula for integrator
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the integrator term in your controller. In discrete time,
the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Integrator method parameter determines the formula Fi as
follows.

Integrator method Fi
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller integrator method matches the controller that regulates the loop.

Tunable: Yes

Dependencies

This parameter is enabled when the controller includes integral action.

Programmatic Use
Block Parameter: IntegratorMethodAllOuter
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

 Field Oriented Control Autotuner

1-229

Filter method — Outer loop controller discrete integration formula for derivative filter
term
Forward Euler (default) | Backward Euler | Trapezoidal

Specify the discrete integration formula for the derivative filter term in your controller. In discrete
time, the PID controller transfer function assumed by the block is

C = P + IFi z + D N
1 + NFd z ,

in parallel form, or in ideal form,

C = P 1 + IFi z + D N
1 + NFd z .

For a controller sample time Ts, the Filter method parameter determines the formula Fd as
follows.

Filter method Fd
Forward Euler Ts

z − 1
Backward Euler Tsz

z − 1
Trapezoidal Ts

2
z + 1
z − 1

For more information about the relative advantages of each method, see the Discrete PID Controller
block reference page.

Make sure the controller derivative filter method matches the controller that regulates the loop.

Tunable: Yes
Dependencies

This parameter is enabled when the controller includes derivative action with a derivative filter term.
Programmatic Use
Block Parameter: FilterMethodAllOuter
Type: character vector
Values: 'Forward Euler' | 'Backward Euler' | 'Trapezoidal'
Default: 'Forward Euler'

Target bandwidth (rad/sec) — Outer loop target crossover frequency of tuned responses
1 (default) | positive scalar

The target bandwidth is the target value for the 0 dB gain crossover frequency of the tuned open-loop
response CP, where P is the plant response associated with the loop, and C is the controller response.
This crossover frequency roughly sets the control bandwidth. For a rise time τ seconds, a good guess
for the target bandwidth is 2/τ rad/sec.

To perform PID tuning, the autotuner block measures frequency-response information up to a
frequency of 10 times the target bandwidth. To ensure that this frequency is less than the Nyquist
frequency, the target bandwidth ωc must satisfy ωcTs ≤ 0.3, where Ts is the controller sample time

1 Blocks

1-230

that you specify with the Controller sample time (sec) parameter. Because of this condition, the
fastest rise time you can enforce for tuning is about 6.67Ts. If this rise time does not meet your design
goals, consider reducing Ts.

For best results, use a target bandwidth that is within about a factor of 10 of the bandwidth with the
initial PID controller. To tune a controller for a larger change in bandwidth, tune incrementally using
smaller changes.

To provide the target bandwidth by using an input port, on the Block tab, select Use external source
for bandwidth.

Programmatic Use
Block Parameter: BandwidthAllOuter
Type: positive scalar
Default: 1

Target phase margin (degrees) — Outer loop target minimum phase margins
60 (default) | scalar in range 0–90

Specify a target minimum phase margin for the tuned open-loop responses associated with the outer
control loops at the crossover frequency.

The target phase margin reflects the desired robustness of the tuned system. Typically, choose a
value in the range of about 45°–60°. In general, a higher phase margin reduces overshoot, but can
limit the response speed. The default value 60° tends to balance performance and robustness,
yielding about 5–10% overshoot, depending on the characteristics of your plant.

To provide the target phase margin by using an input port, on the Block tab, select Use external
source for target phase margins.

Tunable: Yes

Programmatic Use
Block Parameter: TargetPMAllOuter
Type: scalar
Values: 0–90
Default: 60

Experiment Tab

Experiment Start/Stop

D-axis current loop start time (sec) — Specify direct-axis current loop tuning
experiment start time
1 (default)

Specify the simulation time when the d-axis current loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeDaxis
Type: positive scalar
Default: 1

D-axis current loop experiment duration (sec) — Specify direct-axis current loop
tuning experiment duration
0.05 (default)

 Field Oriented Control Autotuner

1-231

Specify the d-axis current loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationDaxis
Type: positive scalar
Default: 0.05

Q-axis current loop start time (sec) — Specify quadrature-axis current loop tuning
experiment start time
1.1 (default)

Specify the simulation time when the q-axis current loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeQaxis
Type: positive scalar
Default: 1.1

Q-axis current loop experiment duration (sec) — Specify quadrature-axis current
loop tuning experiment duration
0.05 (default)

Specify the q-axis current loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationQaxis
Type: positive scalar
Default: 0.05

Speed loop start time (sec) — Specify speed loop tuning experiment start time
2 (default)

Specify the simulation time when the speed loop tuning experiment starts.

Programmatic Use
Block Parameter: StartTimeSpeed
Type: positive scalar
Default: 2

Speed loop experiment duration (sec) — Specify speed loop tuning experiment
duration
3 (default)

Specify the speed loop tuning experiment duration.

Programmatic Use
Block Parameter: DurationSpeed
Type: positive scalar
Default: 3

Flux loop start time (sec) — Specify flux loop tuning experiment start time
6 (default)

Specify the simulation time when the flux tuning experiment starts.

1 Blocks

1-232

Programmatic Use
Block Parameter: StartTimeFlux
Type: positive scalar
Default: 6

Flux loop experiment duration (sec) — Specify flux loop tuning experiment duration
3 (default)

Specify the flux loop tuning experiment duration.
Programmatic Use
Block Parameter: DurationFlux
Type: positive scalar
Default: 3

Loop Experiment Settings

Experiment Mode — Sinusoidal perturbation signal type
Superposition (default) | Sinestream

Specify whether the perturbation at each frequency is applied sequentially (Sinestream) or
simultaneously (Superposition).

• Sinestream — In this mode, the block applies perturbation at each frequency separately. For
more information about sinestream signals for estimation, see “Sinestream Input Signals”
(Simulink Control Design).

• Superposition — In this mode, the perturbation signal includes all specified frequencies at once.
For frequency response estimation at a vector of frequencies ω = [ω1, … , ωN] at amplitudes A =
[A1, … , AN], the perturbation signal is:

Δu = ∑
i

Aisin ωit .

Sinestream mode can be more accurate and can also be less intrusive, because the total size of the
perturbation is never bigger than the values specified by the Sine Amplitudes parameter. However,
due to the sequential nature of the sinestream perturbation, each frequency point you add increases
the recommended experiment time (see the start/stop input port for details). Thus, the estimation
experiment is typically much faster in Superposition mode with satisfactory results.

Sinestream signals reduce the execution time compared to superposition input signals, but also take
longer to estimate the frequency response. Frequency response estimation using sinestream signals
is useful when you have limited processing power and you want to reduce the execution time.
Programmatic Use
Block Parameter: ExperimentMode
Type: character vector
Values: 'Superposition' | 'Sinestream'
Default: 'Superposition'

D-axis Current Loop

Plant Type — Stability of direct-axis current plant
Stable (default) | Integrating

Specify whether the plant associated with the d-axis current control loop is stable or integrating. If
the plant has one or more integrators, select Integrating.

 Field Oriented Control Autotuner

1-233

Programmatic Use
Block Parameter: PlantTypeDaxis
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of direct-axis current plant
Positive (default) | Negative

Specify whether the plant associated with the d-axis current control loop is positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignDaxis
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in direct-axis current loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

1 Blocks

1-234

Programmatic Use
Block Parameter: AmpSineDaxis
Type: scalar, vector of length 5
Default: 1

Q-axis Current Loop

Plant Type — Stability of quadrature-axis current plant
Stable (default) | Integrating

Specify whether the plant associated with the q-axis current control loop is stable or integrating. If
the plant has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeQaxis
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of quadrature-axis current plant
Positive (default) | Negative

Specify whether the plant associated with the q-axis current control loop is positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignQaxis
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in quadrature-axis current loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

 Field Oriented Control Autotuner

1-235

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineQaxis
Type: scalar, vector of length 5
Default: 1

Speed Loop

Plant Type — Stability of speed loop plant
Stable (default) | Integrating

Specify whether the plant associated with the speed control loop is stable or integrating. If the plant
has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeSpeed
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of speed loop plant
Positive (default) | Negative

Specify whether the plant associated with the speed control loop is positive or negative. If a positive
change in the plant input at the nominal operating point results in a positive change in the plant
output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is the
sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignSpeed
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in speed loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

1 Blocks

1-236

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineSpeed
Type: scalar, vector of length 5
Default: 1

Flux Loop

Plant Type — Stability of flux loop plant
Stable (default) | Integrating

Specify whether the plant associated with the flux control loop is stable or integrating. If the plant
has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeFlux
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of flux loop plant
Positive (default) | Negative

Specify whether the plant associated with the flux control loop is positive or negative. If a positive
change in the plant input at the nominal operating point results in a positive change in the plant
output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is the
sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignFlux
Type: character vector
Values: 'Positive' | 'Negative'

 Field Oriented Control Autotuner

1-237

Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in flux loop
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineFlux
Type: scalar, vector of length 5
Default: 1

Current Loops (D-axis + Q-axis)

Plant Type — Stability of current loop plants
Stable (default) | Integrating

Specify whether the plants associated with the current control loops are stable or integrating. If the
plant has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeAllInner
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

1 Blocks

1-238

Plant Sign — Sign of current loop plants
Positive (default) | Negative

Specify whether the plants associated with the current control loops are positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignAllInner
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in current loops
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible
perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineAllInner
Type: scalar, vector of length 5
Default: 1

 Field Oriented Control Autotuner

1-239

Outer Loops (Speed + Flux)

Plant Type — Stability of outer loop plants
Stable (default) | Integrating

Specify whether the plants associated with the outer control loops are stable or integrating. If the
plant has one or more integrators, select Integrating.

Programmatic Use
Block Parameter: PlantTypeAllOuter
Type: character vector
Values: 'Stable' | 'Integrating'
Default: 'Stable'

Plant Sign — Sign of outer loop plants
Positive (default) | Negative

Specify whether the plants associated with the outer control loops are positive or negative. If a
positive change in the plant input at the nominal operating point results in a positive change in the
plant output, specify Positive. Otherwise, specify negative. For stable plants, the sign of the plant is
the sign of the plant DC gain.

Programmatic Use
Block Parameter: PlantSignAllOuter
Type: character vector
Values: 'Positive' | 'Negative'
Default: 'Positive'

Sine Amplitudes — Amplitude of sinusoidal perturbations in outer loops
1 (default) | scalar | vector of length 5

During the experiment, the block injects a sinusoidal signal into the plant associated with the loop at
the frequencies [1/10, 1/3, 1, 3, 10]ωc , where ωc is the target bandwidth for tuning. Use Sine
Amplitudes to specify the amplitude of each of these injected signals. Specify a:

• Scalar value to inject the same amplitude at each frequency
• Vector of length 5 to specify a different amplitude at each of [1/10, 1/3, 1, 3, 10]ωc

In a typical plant with typical target bandwidth, the magnitudes of the plant responses at the
experiment frequencies do not vary widely. In such cases, you can use a scalar value to apply the
same magnitude perturbation at all frequencies. However, if you know that the response decays
sharply over the frequency range, consider decreasing the amplitude of the lower frequency inputs
and increasing the amplitude of the higher frequency inputs. It is numerically better for the
estimation experiment when all the plant responses have comparable magnitudes.

The perturbation amplitudes must be:

• Large enough that the perturbation overcomes any deadband in the plant actuator and generates
a response above the noise level

• Small enough to keep the plant running within the approximately linear region near the nominal
operating point, and to avoid saturating the plant input or output

When Experiment mode is Superposition, the sinusoidal signals are superimposed. Thus, the
perturbation can be at least as large as the sum of all amplitudes. Make sure that the largest possible

1 Blocks

1-240

perturbation is within the range of your plant actuator. Saturating the actuator can introduce errors
into the estimated frequency response.

To provide the sine amplitudes by using an input port, on the Block tab, select Use external source
for sine amplitudes.

Tunable: Yes

Programmatic Use
Block Parameter: AmpSineAllOuter
Type: scalar, vector of length 5
Default: 1

Block Tab

Use external source for bandwidths — Supply external signal for target bandwidths
off (default) | on

Select this parameter to enable the bandwidth input port of the block. You can specify the target
bandwidth for all the loops the block tunes at this port. When this parameter is disabled, specify the
target bandwidths at the block parameters. For more details, see the bandwidth port description.

Programmatic Use
Block Parameter: UseExternalWc
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use external source for target phase margins — Supply external signal for target
phase margin
off (default) | on

Select this parameter to enable the target PM input port of the block. You can specify the target
phase margin for all the loops the block tunes at this port. When this parameter is disabled, specify
the target phase margins at the block parameters. For more details, see the target PM port
description.

Programmatic Use
Block Parameter: UseExternalPM
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Use external source for start/stops of experiment — Supply external signal for
start and stop of tuning experiment
off (default) | on

Select this parameter to enable the start/stop and ActiveLoop input ports of the block. You can
specify the start and stop of the experiment and which loop the block tunes at these ports. When this
parameter is disabled, specify the start time and duration of the tuning experiment at the block
parameters. For more details, see the start/stop and ActiveLoop port descriptions.

Programmatic Use
Block Parameter: UseExternalSourceStartStop
Type: character vector

 Field Oriented Control Autotuner

1-241

Values: 'off' | 'on'
Default: 'off'

Use external source for sine amplitudes — Supply external signal for sinusoidal
perturbation amplitude
off (default) | on

Select this parameter to enable the sine Amp input port of the block. You can specify sinusoidal
perturbation amplitude for all the loops the block tunes at this port. When this parameter is disabled,
supply the sine amplitudes at block parameters. For more details, see the sine Amp port description.

Programmatic Use
Block Parameter: UseExternalAmpSine
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Data Type — Floating point precision
double (default) | single

Specify the floating-point precision based on the simulation environment or hardware requirements.

Programmatic Use
Block Parameter: BlockDataType
Type: character vector
Values: 'double' | 'single'
Default: 'double'

Estimated phase margin achieved by tuned controllers — Phase margin achieved by
most recently tuned loop
off (default) | on

Select this parameter to enable the estimated PM output port of the block. The block returns the
phase margin achieved by the tuned controller of the most recently tuned loop. When this parameter
is disabled, you can see the tuning results by using the Export to MATLAB parameter. For more
details, see the estimated PM port description.

Programmatic Use
Block Parameter: UseExternalAchievedPM
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Plant frequency responses near bandwidth — Estimated frequency response for most
recently tuned loop
off (default) | on

Select this parameter to enable the frd output port of the block. The block returns the phase margin
achieved by the tuned controller of the most recently tuned loop. When this parameter is disabled,
you can see the tuning results by using the Export to MATLAB parameter. For more details, see the
frd port description.

Programmatic Use
Block Parameter: UseExternalFRD
Type: character vector

1 Blocks

1-242

Values: 'off' | 'on'
Default: 'off'

Plant nominal input and output — Plant input and output at nominal operating point
off (default) | on

Select this parameter to enable the nominal output port of the block. The block returns the plant
input and output at the nominal operating point of the most recently tuned loop. When this parameter
is disabled, you can see the tuning results by using the Export to MATLAB parameter. For more
details, see the port description.

Programmatic Use
Block Parameter: UseExternalU0
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Start/stop of autotuning process — Signal indicating start and end of experiment for
each tuned loop
off (default) | on

Select this parameter to enable loop start/stops output port of the block. The block returns a
signal indicating the times at which the autotuning experiment started and ended for each loop tuned
by the block. When this parameter is disabled, you can see the tuning results by using the Export to
MATLAB parameter. For more details, see the loop start/stops port description.

Programmatic Use
Block Parameter: UseExternalActiveLoop
Type: character vector
Values: 'off' | 'on'
Default: 'off'

Export to MATLAB — Send experiment and tuning results to MATLAB workspace
button

When you click this button, the block creates a structure in the MATLAB workspace containing the
experiment and tuning results. This structure, FOCTuningResult, contains the tuning results for
each loop the block tunes.

• Daxis — D-axis current loop tuning results
• Qaxis — Q-axis current loop tuning results
• Speed — Speed loop tuning results
• Flux — Flux loop tuning results

For each loop tuned by the block, the result contains the following fields:

• P, I, D, N — Tuned PID gains. The structure contains whichever of these fields are necessary for
the controller type you are tuning. For instance, if you are tuning a PI controller, the structure
contains P and I, but not D and N.

• TargetBandwidth — The value you specified in the Target bandwidth (rad/sec) parameter
of the block.

• TargetPhaseMargin — The value you specified in the Target phase margin (degrees)
parameter of the block.

 Field Oriented Control Autotuner

1-243

• EstimatedPhaseMargin — Estimated phase margin achieved by the tuned system.
• Controller — The tuned PID controller, returned as a pid (for parallel form) or pidstd (for

ideal form) model object.
• Plant — The estimated plant, returned as an frd model object. This frd contains the response

data obtained at the experiment frequencies [1/10, 1/3, 1, 3, 10]ωc.
• PlantNominal — The plant input and output at the nominal operating point when the experiment

begins, specified as a structure with the fields u (input) and y (output).

You can export to the MATLAB workspace while the simulation is running, including when running in
external mode.

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The generated code for this block can be resource heavy. For real-time applications, deploying the
code on rapid prototyping hardware, such as the Speedgoat real-time target machine, is
recommended.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Park Transform | PI Controller | DQ Limiter | Speed Measurement | Inverse Park Transform

Topics
“How to Use Field Oriented Control Autotuner Block”

1 Blocks

1-244

ACIM Control Reference
Compute reference currents for field-oriented control of induction motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Control Reference block computes the d-axis and q-axis reference currents for the field-
oriented control (and field-weakening) operation.

The block accepts the reference torque and feedback mechanical speed and outputs the
corresponding d- and q-axes reference currents.

The block computes the reference current values by solving mathematical relationships. The
calculations use the SI unit system. When working with the Per-Unit (PU) system (with the Input
units parameter set to Per-Unit (PU)), the block converts PU input signals to SI units to perform
the computations and converts them back to PU values at the output.

These equations describe how the block computes the reference d-axis and q-axis current values.

Mathematical Model of Induction Motor

These model equations describe the dynamics of induction motor in the rotor flux reference frame:

The machine inductances are represented as,

Ls = Lls + Lm

Lr = Llr + Lm

σ = 1 −
Lm

2

Ls ⋅ Lr

Stator voltages are represented as,

vsd = Rsisd + σLs
disd
dt +

Lm
Lr

dλrd
dt − ωeσLsisq

vsq = Rsisq + σLs
disq
dt +

Lm
Lr

ωeλrd + ωeσLsisd

In the preceding equations, the flux linkages can be represented as,

λsd =
Lm
Lr

λrd + σLsisd

λsq = σLsisq

 ACIM Control Reference

1-245

τr
dλrd
dt + λrd = Lmisd

If we keep the rotor flux as constant and the d-axis is aligned to the rotor flux reference frame, then
we can imply:

λrd = Lmisd

λrq = 0

These equations describe the mechanical dynamics,

Te = 3
2p

Lm
Lr

λrdisq

Te− TL = J
dωm

dt + Bωm

These equations describe the slip speed,

τr =
Lr
Rr

ωe_slip =
Lm ⋅ isq

ref

τr ⋅ λrd

ωe = ωr + ωe_slip

θe = ∫ωe ⋅ dt =∫(ωr + ωe_slip) ⋅ dt = θr + θslip

Reference Current Computation

These equations show computation of the reference currents,

isd_0 =
λrd
Lm

isq_req = Tref

3
2p

Lm
Lr

λrd

The reference currents are computed differently for operation below base speed and field weakening
region,

If ωm ≤ ωrated:

isd_sat = min(isd_0, imax)

If ωm > ωrated:

isd_ fw = isd_0
ωrated

ωm

isd_sat = min(isd_ fw, imax)

1 Blocks

1-246

These equations indicate the q-axis current computation,

isq_lim = imax
2 − isd_sat

2

isq_sat = sat(isq_lim, isq_req)

The block outputs the following values,

isd
ref = isd_sat

isq
ref = isq_sat

where:

• p is the number of pole pairs of the motor.
• Rs is the stator phase winding resistance (Ohms).

• Rr is the rotor resistance referred to stator (Ohms).

• Lls is the stator leakage inductance (Henry).

• Llr is the rotor leakage inductance (Henry).

• Ls is the stator inductance (Henry).

• Lm is the magnetizing inductance (Henry).

• Lr is the rotor inductance referred to stator (Henry).

• σ is the total leakage factor of the induction motor.
• τr is the rotor time constant (sec).

• vsd and vsq are the stator d- and q-axis voltages (Volts).

• isd and isq are the stator d- and q-axis currents (Amperes).

• isd_0 is the rated d-axis current of the stator also known as magnetizing current (Amperes).

• imax is the maximum phase current (peak) of the motor (Amperes).

• λsd is the d-axis flux linkage of the stator (Weber).

• λsq is the q-axis flux linkage of the stator (Weber).

• λrd is the d-axis flux linkage of the rotor (Weber).

• λrq is the q-axis flux linkage of the rotor (Weber).

• ωe_slip is the electrical slip speed of the rotor (Radians/ sec).

• ωslip is the mechanical slip speed of the rotor (Radians/ sec).

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).

• ωm is the rotor mechanical speed (Radians/ sec).

• ωr is the rotor electrical speed (Radians/ sec).

• ωrated is the rated mechanical speed of the motor (Radians/ sec).

• Te is the electromechanical torque produced by the motor (Nm).

 ACIM Control Reference

1-247

Ports
Input

Tref — Reference torque value
scalar

Reference torque input value for which the block computes the reference current.
Data Types: single | double | fixed point

⍵m — Mechanical speed
scalar

Reference mechanical speed value for which the block computes the reference current.
Data Types: single | double | fixed point

Output

Isdref — Reference d-axis stator current
scalar

Reference d-axis stator current value.
Data Types: single | double | fixed point

Isqref — Reference q-axis stator current
scalar

Reference q-axis stator current value.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

1 Blocks

1-248

Rated Speed (rpm) — Rated speed of motor
1150 (default) | scalar

Rated speed of the induction motor according to motor data sheet (in rpm).

Synchronous Speed (rpm) — Synchronous speed of motor
1500 (default) | scalar

Synchronous speed of the induction motor (in rpm).

Max current (A) — Maximum phase current limit for motor (amperes)
3 (default) | scalar

Maximum phase current limit for the induction motor (amperes).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit system
0.50072 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020b

References
[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[2] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

[3] W. Leonhard, Control of Electrical Drives, 3rd ed. Secaucus, NJ, USA:Springer-Verlag New York,
Inc., 2001.

 ACIM Control Reference

1-249

[4] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue
3, May/June 2000, pp. 817-825.

[5] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp.
42-50.

[6] R. M. Prasad and M. A. Mulla, “A novel position-sensorless algorithm for field oriented control of
DFIG with reduced current sensors,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1098–
1108, July 2019.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
MTPA Control Reference | ACIM Slip Speed Estimator | PI Controller | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-250

ACIM Feed Forward Control
Decouple d-axis and q-axis current to eliminate disturbance
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Feed Forward Control block decouples d-axis and q-axis current controls and generates the
corresponding feed-forward voltage gains for field-oriented control of the induction motor.

The block accepts feedback values of d-axis and q-axis currents and the mechanical speed of the
rotor.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the values back
to per-unit (PU) values.

The machine inductances and stator flux are represented as,

Ls = Lls + Lm

Lr = Llr + Lm

σ = 1 −
Lm

2

Ls ⋅ Lr

λsd =
Lm
Lr

λrd + σLsisd

λsq = σLsisq

These equations describe how the block computes the feed-forward gain.

Vsd
FF = ωeλsd

Vsq
FF = − ωeλsq

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-245.

where:

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• Lls is the stator leakage inductance (Henry).

 ACIM Feed Forward Control

1-251

• Llr is the rotor leakage inductance (Henry).

• Ls is the stator inductance (Henry).

• Lr is the rotor inductance (Henry).

• Lm is the magnetizing inductance of the motor (Henry).

• σ is the total leakage factor of the induction motor.
• λsd is the d-axis flux linkage of the stator (Weber).

• λsq is the q-axis flux linkage of the stator (Weber).

• λrd is the d-axis flux linkage of the rotor (Weber).

• isd and isq are the stator d- and q-axis currents (Amperes).

Ports
Input

Isd — D-axis stator current
scalar

Stator current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Isq — Q-axis stator current
scalar

Stator current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

VsdFF — D-axis feed-forward voltage
scalar

Feed-forward voltage along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

VsqFF — Q-axis feed-forward voltage
scalar

Feed-forward voltage along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

1 Blocks

1-252

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Stator leakage inductance (H) — Leakage inductance of stator winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the stator winding (in Henry).

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

Output Saturation (V) — Saturation limit for output values
24/sqrt(3) (default) | scalar

Saturation limit (in Volts) for the block outputs VsdFF and VsqFF.

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Base voltage for per-unit system
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

 ACIM Feed Forward Control

1-253

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
PMSM Feed Forward Control | Park Transform | Speed Measurement | DQ Limiter | PI Controller

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-254

ACIM Slip Speed Estimator
Calculate slip speed of AC induction motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Slip Speed Estimator block computes the mechanical slip speed (difference between the
synchronous speed and rotor speed) of the induction motor.

The block accepts the reference values of d- and q-axis currents and outputs the computed slip speed
of the induction motor.

Equations

These equations describe the utilization of the slip speed value for field-oriented control (FOC) of the
induction motor:

τr =
Lr
Rr

ωe_slip =
Lm ⋅ isq

ref

τr ⋅ λrd

ωe = ωr + ωe_slip

θe = ∫ωe ⋅ dt =∫(ωr + ωe_slip) ⋅ dt = θr + θslip

If we keep the rotor flux as constant and the d-axis is aligned to the rotor flux reference frame, then
we can imply:

λrd = Lmisd

This block implements the preceding calculations as:

ωslip = 1
p

1
τr

isq
ref

isd
ref

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-245.

where:

• ωe_slip is the electrical slip speed of the rotor (Radians/ sec).
• ωslip is the mechanical slip speed of the rotor (Radians/ sec).

 ACIM Slip Speed Estimator

1-255

• ωe is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
• ωm is the rotor mechanical speed (Radians/ sec).
• ωr is the rotor electrical speed (Radians/ sec).
• Lm is the magnetizing inductance of the motor (Henry).
• Rr is the rotor resistance referred to stator (Ohms).
• isd

ref and isq
ref are the reference stator d- and q-axis currents (Amperes).

• τr is the rotor time constant (sec).
• λrd is the d-axis flux linkage of the rotor (Weber).

Ports
Input

Isdref — Reference d-axis stator current
scalar

Reference d-axis stator current.
Data Types: single | double | fixed point

Isqref — Reference q-axis stator current
scalar

Reference q-axis stator current.
Data Types: single | double | fixed point

Output

⍵mslip — Slip speed of induction motor
scalar

Mechanical slip speed of the rotor that the block computes.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Rotor resistance (Ohm) — Rotor resistance of motor
1.05 (default) | scalar

Rotor resistance of the induction motor in Ohms.

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

1 Blocks

1-256

Inductance due to leakage flux linked to the rotor winding (in Henry).

Magnetizing inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry).

Output saturation (rpm) — Saturation value for the block output
150 (default) | scalar

Saturation value for the block output (in rpm).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

Base speed (in rpm) for per-unit system.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Position Generator | Speed Measurement | ACIM Control Reference

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 ACIM Slip Speed Estimator

1-257

ACIM Torque Estimator
Estimate electromechanical torque and power
Library: Motor Control Blockset / Controls / Control Reference

Description
The ACIM Torque Estimator block generates electromechanical torque and power estimates for an
induction motor. The block outputs the mathematically computed electromechanical torque for
constant motor parameters. To measure an accurate torque value, we recommend that you use a
physical sensor.

The block accepts feedback values of d- and q-axis stator current and mechanical speed as inputs.

Equations

If you select Per-Unit (PU) in the Input units parameter, the block converts the inputs to SI units
before performing any computation. After calculating the output, the block converts the output back
to per unit values.

These equations describe the computation of electromechanical torque and power estimates by the
block.

Te = 3
2p

Lm
Lr

λrdisq

Pe = Te ⋅ ωm

For detailed set of equations and assumptions, see “Mathematical Model of Induction Motor” on page
1-245.

where:

• p is the number of pole pairs available in the motor.
• Lm is the magnetizing inductance of the motor (Henry).
• Lr is the rotor inductance (Henry).
• λrd is the d-axis flux linkage of the rotor (Weber).
• isq is the stator q-axis current (Amperes).
• ωm is the mechanical speed of the rotor (Radians/ sec).

1 Blocks

1-258

Ports
Input

Isd — D-axis stator current
scalar

Stator current along the d-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

Isq — Q-axis stator current
scalar

Stator current along the q-axis of the rotating dq reference frame.
Data Types: single | double | fixed point

ωm — Mechanical speed of rotor
scalar

Mechanical speed of the rotor.
Data Types: single | double | fixed point

Output

Te — Electromechanical torque
scalar

Electromechanical torque of the rotor.
Data Types: single | double | fixed point

Pe — Electromechanical power
scalar

Electromechanical power of the rotor.
Data Types: single | double | fixed point

Parameters
Number of pole pairs — Number of pole pairs available in motor
2 (default) | scalar

Number of pole pairs available in the induction motor.

Stator leakage inductance (H) — Leakage inductance of stator winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the stator winding (in Henry).

Rotor leakage inductance (H) — Leakage inductance of rotor winding
6.81e-3 (default) | scalar

Inductance due to leakage flux linked to the rotor winding (in Henry).

 ACIM Torque Estimator

1-259

Magnetizing Inductance (H) — Magnetizing inductance of induction motor
30e-3 (default) | scalar

Inductance due to the magnetizing flux (in Henry)..

Rated Flux (Wb) — Rated flux of motor
38.2e-3 (default) | scalar

Rated flux of the induction motor (in Weber).

Input units — Unit of input values
Per-Unit (PU) (default) | SI Units

Unit of the input values.

Base Voltage (V) — Base voltage for per-unit system
24/sqrt(3) (default) | scalar

Base voltage (in Volts) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Current (A) — Base current for per-unit system
5.3611 (default) | scalar

Base current (in Amperes) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base Speed (rpm) — Base speed for per-unit system
1500 (default) | scalar

Base speed (in rpm) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Base torque for per-unit system
0.50072 (default) | scalar

Base torque (in Nm) for per-unit system. See “Per-Unit System” page for more details.

This parameter is not configurable and uses a value that is internally computed using other
parameters.
Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Base power (W) — Base power for per-unit system
111.4284 (default) | scalar

Base power (in W) for per-unit system. See “Per-Unit System” page for more details.

1 Blocks

1-260

This parameter is not configurable and uses a value that is internally computed using other
parameters.

Dependencies

To display this parameter, set Input units to Per-Unit (PU).

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Park Transform | Speed Measurement

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 ACIM Torque Estimator

1-261

Six Step Commutation
Generate switching sequence for six-step commutation of brushless DC (BLDC) motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The Six Step Commutation block uses a 120-degree conduction mode to generate a switching
sequence to implement six-step commutation (or trapezoidal commutation) on a three-phase BLDC
motor. You can use the switching signals to operate switches and control the stator currents, and
therefore, control motor speed and direction of rotation.

The block accepts the Hall sequence number or rotor position (from a position sensor such as a Hall
or a quadrature encoder sensor) and the direction of torque as inputs. It uses the Hall sequence or
position input to determine the sector where the rotor is present. The block computes the switching
sequence such that it energizes the corresponding phases to maintain the torque angle (angle
between rotor d-axis and stator magnetic field) of 90 degrees (with a deviation of 30 degrees). For
example, as shown in the below figure, for hall state 5, phase B and phase C are triggered to spin the
motor.

This figure is an example that shows the stator magnetic field phasors along with their default Hall
sequence. It is recommended that you use “Hall Sensor Sequence Calibration of BLDC Motor” to
obtain hall sequence and use this hall sequence with the block to achieve the six step commutation.

1 Blocks

1-262

The block uses a commutation logic based on the Hall sequence to generate switching sequences.

Hall State (Hall a,
Hall b, Hall c)

Switching Sequence (AA' BB' CC')
AA' BB' CC'

4 (100) 00 10 01
6 (110) 01 10 00
2 (010) 01 00 10
3 (011) 00 01 10
1 (001) 10 01 00
5 (101) 10 00 01

This figure shows the stator magnetic field phasors along with the possible sectors (determined from
the input rotor position).

 Six Step Commutation

1-263

The block uses a commutation logic based on the position sensor signals to generate switching
sequences.

Position (θ) Sector Switching Sequence (AA' BB' CC')
AA' BB' CC'

(-30°, 30°] 1 00 10 01
(30°, 90°] 2 01 10 00

(90°, 150°] 3 01 00 10
(150°, 210°] 4 00 01 10
(210°, 270°] 5 10 01 00
(270°, 330°] 6 10 00 01

1 Blocks

1-264

Ports
Input

Hall — Hall sensor sequence
scalar

The Hall sensor sequence. If the Hall sensors are placed 120 degrees apart, the sequence number is
between 1 to 6. For a custom Hall sensor sequence (when the Hall sensors are placed 60 degrees
apart), the sequence number is between 0 to 7.

Note If you provide an invalid Hall sequence to this port, the block sets the output port Ctrl to zero.

Dependencies

To enable this port, set Input type to Hall.
Data Types: single | double | fixed point

Position — Rotor position
scalar

Position detected by either the Hall or quadrature encoder sensor in radians (0 to 2π), degrees (0 to
360), or per unit (0 to 1).

Dependencies

To enable this port, set Input type to Position.
Data Types: single | double | fixed point

TorqueSign — Direction of rotation
scalar

Torque sign (+1 or -1) indicating the direction of rotation of the BLDC motor.
Data Types: single | double | int8 | int16 | int32

 Six Step Commutation

1-265

Output

Ctrl — Motor control switching sequence
scalar

Switching sequence signals to implement six-step commutation (or trapezoidal commutation) on the
BLDC motor.
Data Types: single | double | fixed point

Parameters
Input type — Block input type
Hall (default) | Position

Type of position sensor feedback connected to the block input.

Position Unit — Unit of position input
Per-unit (default) | Degrees | Radians

Unit of position feedback input.

Dependencies

To enable this parameter, set Input type to Position.

Hall Sequence number — Hall sequence
[5,4,6,2,3,1] (default) | vector

Customized Hall sequence.

If the Hall sensors are placed 120 degrees apart, the sequence number is between 1 to 6. If the Hall
sensors are placed 60 degrees apart, the sequence number is between 0 to 7.

Dependencies

To enable this parameter, set Input type to Hall.

Enable custom commutation — Enable Commutation switching parameter
off (default) | on

Select this parameter for the block to enable the Commutation switching parameter.

Dependencies

To enable this parameter, set Input type to Hall.

Commutation switching — Commutation switching sequence
[0 0 1 0 0 1;0 1 1 0 0 0;0 1 0 0 1 0;0 0 0 1 1 0;1 0 0 1 0 0;1 0 0 0 0 1]
(default) | vector

Customized switching sequence for commutation of the BLDC motor.

Dependencies

To enable this parameter, set Input type to Hall and select Enable custom commutation
parameter.

1 Blocks

1-266

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Mechanical to Electrical Position | PI Controller

Topics
“Open-Loop and Closed-Loop Control”
“Six-Step Commutation”

 Six Step Commutation

1-267

Vector Plot
Plot vectors in space domain
Library: Motor Control Blockset / Signal Management

Description
The Vector Plot block plots and tracks the changes in vectors in the space domain. You can use the
block to visualize vectors for electrical quantities (such as voltage and current) and track their
changes in real time by using the trace left behind by the vector tip.

The block accepts vector magnitudes and their angles (in radians, per-unit, or degrees) as inputs and
provides a pictorial representation of the vectors. The block also traces the plot history of the vector
tip according to the selected number of points.

For details about how to use the Vector Plot block, see the model mcb_pmsm_foc_qep_f28379d in
“Field-Oriented Control of PMSM Using Quadrature Encoder”.

Ports
Input

Vabc — Three-phase voltages
vector

Voltage components in the three-phase system in the abc reference frame. The port accepts three
voltage components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta.
Data Types: single | double

Iabc — Three-phase currents
vector

Current components in the three-phase system in the abc reference frame. The port accepts three
current components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta.
Data Types: single | double

Theta — Angle of transformation
scalar

1 Blocks

1-268

Angle value (in radians, per-unit, or degrees for Vabc and Iabc) between the rotating reference
frame and the α-axis.

The figures show the angle of transformation when:

• The d-axis aligns with the α-axis.

• The q-axis aligns with the α-axis.

 Vector Plot

1-269

In both cases, the angle is Theta = ωt, where:

• Theta is the angle between the α- and d-axes for the d-axis alignment or the angle between the
α- and q-axes for the q-axis alignment. It indicates the angular position of the rotating dq
reference frame with respect to the α-axis.

• ω is the rotational speed in the d-q reference frame.
• t is the time in seconds from the initial alignment.

Dependencies

To enable this port, set Select input types to Vabc Iabc Theta and set Select reference frame
to Rotating Reference Frame.
Data Types: single | double

Vdq — Voltages in dq reference frame
vector

Direct and quadrature axis voltage components in the rotating dq reference frame. The port accepts
two voltage components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vdq Idq.
Data Types: single | double

Idq — Currents in dq reference frame
vector

Direct and quadrature axis current components in the rotating dq reference frame. The port accepts
two currents components multiplexed by using Mux.

Dependencies

To enable this port, set Select input types to Vdq Idq.
Data Types: single | double

Magnitude — Vector magnitudes
vector

Magnitudes of vectors that you want to plot. The port accepts up to six vector magnitudes
multiplexed by using Mux. The vector magnitudes correspond to the angle values input to the Angle
port.

Note The number of multiplexed vector magnitudes should be same as the number of multiplexed
angles input to the Angle port.

Dependencies

To enable this port, set Select input types to Mag Angle.
Data Types: single | double

1 Blocks

1-270

Angle — Vector angle
vector

Angle values (in radians, per-unit, or degrees) of vectors that you want to plot. The port accepts up to
six vector angles multiplexed by using Mux. The angle values correspond to the vector magnitudes
input to the Magnitude port.

Note The number of multiplexed vector angles should be same as the number of multiplexed
magnitudes input to the Magnitude port.

Dependencies

To enable this port, set Select input types to Mag Angle.
Data Types: single | double

Parameters
Select input types — Input port types
Vabc Iabc Theta (default) | Vdq Idq | Mag Angle

Types of input ports available for the block.

Select reference frame — Reference frame for vectors
Rotating Reference Frame (default) | Stationary Reference Frame

Select type of reference frame that the block uses to plot the input vectors:

• Rotating Reference Frame — Select this option to plot the three-phase voltage and current
vectors in the rotating dq reference frame.

 Vector Plot

1-271

• Stationary Reference Frame — Select this option to plot the three-phase voltage and current
vectors in the stationary αβ reference frame.

1 Blocks

1-272

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta.

Alpha (phase-a) axis alignment — dq reference frame alignment
D-axis (default) | Q-axis

Align either the d- or q-axis of the rotating reference frame to the α-axis of the stationary reference
frame.

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta and Select reference
frame to Rotating Reference Frame.

Theta units — Unit of Theta input
Radians (default) | Degrees | Per-unit

Unit of Theta input value.

 Vector Plot

1-273

Dependencies

To enable this parameter, set Select input types to Vabc Iabc Theta and Select reference
frame to Rotating Reference Frame.

Angle units — Unit of Angle input
Radians (default) | Degrees | Per-unit

Unit of Angle input value.

Dependencies

To enable this parameter, set Select input types to Mag Angle.

Open plot at simulation start — Open vector plot at simulation start
on (default) | off

Select this parameter to automatically open the vector plot window when simulation begins.

Showplot — Click this button to open the vector plot window.

Vector Plot Window

This example shows the plot when you set Select input types to Mag Angle and provide three
multiplexed magnitudes and three multiplexed angles as inputs.

You can use these buttons on the Vector Plot window:

1 Blocks

1-274

•
 (Save Figure) — Click to save the plot to an image.

•
 (Preferences) — Click to open the Preferences dialog box.

• Display traces (samples) — Enter the number of samples that you want to trace for the
vector tip. By default, the field uses the value 100.

• Auto-Scale — Select this field to automatically scale the axes limit. The block performs auto-
scaling every at every 1000 points of simulation.

• Axes limit — Enter the maximum value of the x and y axis that the plot should use. By default,
the field uses the value 1. If you select Auto-Scale and the vector magnitude increases beyond
the selected axes limit, the limit on the Vector Plot window extends automatically to
accommodate the vector magnitude.

• (Run Simulation) — Click to simulate the model that contains the Vector Plot block.

 (Pause Simulation) — Click to pause simulation.
• (Stop Simulation) — Click to stop simulation.
• (Clear Data History) — Click to clear the vector tracing history.
• (Insert Legend) — Click to insert or remove the legend describing the vectors. You can

manually change the default legend description.

•
 (Auto Scale) — Click to turn on or turn off the auto-scale function.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Topics
“Field-Oriented Control of PMSM Using Quadrature Encoder”

 Vector Plot

1-275

Induction Motor
Three-phase induction motor
Library: Powertrain Blockset / Propulsion / Electric Motors and

Inverters
Motor Control Blockset / Electrical Systems / Motors

Description
The Induction Motor block implements a three-phase induction motor. The block uses the three-phase
input voltages to regulate the individual phase currents, allowing control of the motor torque or
speed.

Note The block parameters use per-phase values of a star-equivalent induction motor.

By default, the block sets the Simulation Type parameter to Continuous to use a continuous
sample time during simulation. If you want to generate code for fixed-step double- and single-
precision targets, considering setting the parameter to Discrete. Then specify a Sample Time, Ts
parameter.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-
axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

1 Blocks

1-276

The block uses these equations to calculate the electrical speed (ωem) and slip speed (ωslip).

ωem = Pωm
ωslip = ωsyn− ωem

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the
difference between the stator a-axis (da) speed and slip speed:

ωdA = ωda− ωem

To simplify the equations for the flux, voltage, and current transformations, the block uses a
stationary reference frame:

ωda = 0
ωdA = − ωem

Calculation Equation
Flux d

dt
λsd
λsq

=
vsd
vsq

− Rs
isd
isq

− ωda
0 −1
1 0

λsd
λsq

d
dt

λrd
λrq

=
vrd
vrq

− Rr
ird
irq

− ωdA
0 −1
1 0

λrd
λrq

λsd
λsq
λrd
λrq

=

Ls 0
0 Ls

Lm 0
0 Lm

Lm 0
0 Lm

Lr 0
0 Lr

isd
isq
ird
irq

 Induction Motor

1-277

Calculation Equation
Current isd

isq
ird
irq

= 1
Lm

2 − LrLs

−Lr 0
0 −Lr

Lm 0
0 Lm

Lm 0
0 Lm

−Ls 0
0 −Ls

λsd
λsq
λrd
λrq

Inductance Ls = Lls + Lm
Lr = Llr + Lm

Electromagnetic torque Te = PLm(isqird− isdirq)
Power invariant dq transformation to
ensure that the dq and three phase
powers are equal

vsd
vsq

= 2
3

cos(Θda) cos(Θda−
2π
3) cos(Θda + 2π

3)

−sin(Θda) −sin(Θda−
2π
3) −sin(Θda + 2π

3)

va
vb
vc

ia
ib
ic

= 2
3

cos(Θda) −sin(Θda)

cos(Θda−
2π
3)

cos(Θda + 2π
3)

−sin(Θda−
2π
3)

−sin(Θda + 2π
3)

isd
isq

The equations use these variables.

ωm Angular velocity of the rotor (rad/s)
ωem Electrical rotor speed (rad/s)
ωslip Electrical rotor slip speed (rad/s)
ωsyn Synchronous rotor speed (rad/s)
ωda dq stator electrical speed with respect to the rotor a-axis (rad/s)
ωdA dq stator electrical speed with respect to the rotor A-axis (rad/s)
Θda dq stator electrical angle with respect to the rotor a-axis (rad)
ΘdA dq stator electrical angle with respect to the rotor A-axis (rad)
Lq, Ld q- and d-axis inductances (H)
Ls Stator inductance (H)
Lr Rotor inductance (H)
Lm Magnetizing inductance (H)
Lls Stator leakage inductance (H)
Llr Rotor leakage inductance (H)
vsq, vsd Stator q- and d-axis voltages (V)
isq, isd Stator q- and d-axis currents (A)
λsq, λsd Stator q- and d-axis flux (Wb)
irq, ird Rotor q- and d-axis currents (A)

1 Blocks

1-278

λrq, λrd Rotor q- and d-axis flux (Wb)
va, vb, vc Stator voltage phases a, b, c (V)
ia, ib, ic Stator currents phases a, b, c (A)
Rs Resistance of the stator windings (Ohm)
Rr Resistance of the rotor windings (Ohm)
P Number of pole pairs
Te Electromagnetic torque (Nm)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

• Positive signals indicate an
input

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − (Rsisd
2 + Rsisq

2

+ − Rrird
2 + Rrirq

2)

 Induction Motor

1-279

Bus Signal Description Variab
le

Equations

• Negative signals indicate a
loss

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (Ohm)
Rr Motor resistance (Ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the rotor (rad/s)
F Combined motor and load viscous damping (N·m/(rad/s))
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

LdTrq — Load torque on motor
scalar

Load torque on the motor shaft, Tm, in N·m.

Dependencies

To create this port, select Torque for the Port configuration parameter.

Spd — Rotor shaft speed
scalar

1 Blocks

1-280

Angular velocity of the rotor, ωm, in rad/s.
Dependencies

To create this port, select Speed for the Port configuration parameter.

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

rotor
ωm rad/s

MtrMechPos Rotor mechanical angular position θm rad
MtrPos Rotor electrical angular position θe rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElec
Loss

Resistive power loss Pelec W

PwrMech
Loss

Mechanical power loss Pmech W

PwrStored PwrMtrS
tored

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

MtrTrq — Motor torque
scalar

Motor torque, Tmtr, in N·m.

 Induction Motor

1-281

Dependencies

To create this port, select Speed for the Port configuration parameter.

MtrSpd — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

Dependencies

To create this port, select Torque for the Port configuration parameter.

Parameters
Block Options

Simulation type — Select simulation type
Continuous (default) | Discrete

By default, the block uses a continuous sample time during simulation. If you want to generate code
for single-precision targets, considering setting the parameter to Discrete.

Dependencies

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

Sample time, Ts — Sample time for discrete integration
0.001 (default) | scalar

Integration sample time for discrete simulation, in s.

Dependencies

Setting Simulation Type to Discrete creates the Sample Time, Ts parameter.

Port configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates Output Port
Torque LdTrq MtrSpd
Speed Spd MtrTrq

Load Parameter Values

File — Path to motor parameter ".m" or ".mat" file
scalar

Enter the path to the motor parameter ".m" or ".mat" file that you saved using the Motor Control
Blockset parameter estimation tool. You can also click the Browse button to navigate and select the
".m" or ".mat" file, and update File parameter with the file name and path. For details related to the
motor parameter estimation process, see “Estimate PMSM Parameters Using Recommended
Hardware”.

1 Blocks

1-282

• Load from file - Click this button to read the estimated motor parameters from the ".m" or ".mat"
file (indicated by the File parameter) and load them to the motor block.

• Save to file - Click this button to read the motor parameters from the motor block and save them
into a ".m" or ".mat" file (with a file name and location that you specify in the File parameter).

Note Before you click Save to file button, ensure that the target file name in the File parameter has
either ".m" or ".mat" extension. If you use any other file extension, the block displays an error
message.

Parameters

Number of pole pairs, P — Pole pairs
2 (default) | scalar

Motor pole pairs, P.

Stator resistance and leakage inductance, Zs — Resistance and inductance
[1.77 0.0139] (default) | vector

Stator resistance, RS, in ohms and leakage inductance, Lls, in H.

Rotor resistance and leakage inductance, Zr — Resistance and inductance
[1.34 0.0121] (default) | vector

Rotor resistance, Rr, in ohms and leakage inductance, Llr, in H.

Magnetizing inductance, Lm — Inductance
0.3687 (default) | scalar

Magnetizing inductance, Lm, in H.

Physical inertia, viscous damping, static friction, mechanical — Inertia,
damping, friction
[0.001 0 0] (default) | vector

Mechanical properties of the rotor:

• Inertia, J, in kg·m^2
• Viscous damping, F, in N·m/(rad/s)
• Static friction, Tf, in N·m

Dependencies

To enable this parameter, select Torque for the Port configuration.

Initial Values

Initial mechanical position, theta_init — Angular position
0 (default) | scalar

Initial rotor angular position, θm0, in rad.

Initial mechanical speed, omega_init — Angular speed
0 (default) | scalar

 Induction Motor

1-283

Initial angular velocity of the rotor, ωm0, in rad/s.

Dependencies

To enable this parameter, select Torque for the Port configuration.

Version History
Introduced in R2020b

References
[1] Mohan, Ned. Advanced Electric Drives: Analysis, Control and Modeling Using Simulink.

Minneapolis, MN: MNPERE, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool”

1 Blocks

1-284

Sliding Mode Observer
Compute electrical position and mechanical speed of a surface-mount PMSM
Library: Motor Control Blockset / Sensorless Estimators

Description
The Sliding Mode Observer block computes the electrical position and mechanical speed of a Surface
Mount PMSM by using the voltage and current values along the α- and β-axes of the stationary αβ
reference frame.

Equations

These equations describe the discrete-time operation of a PMSM:

iαβ(k + 1) = Aiαβ(k) + Bvαβ(k)− Beαβ(k)

eαβ(k + 1) = eαβ(k) + Tsωe(k) Jeαβ(k)

J =
0 −1
1 0

Φ =
−R

L 0

0 −R
L

A = eΦTs

B = ∫
0

Ts
eΦτdτ =

b 0
0 b

b = 1 − e−RTs/L

R

These equations describe the discrete-time sliding mode observer operation of a surface mount
PMSM:

i αβ(k + 1) = Ai αβ(k) + Bvαβ(k)− Be αβ(k)− ηSign(i αβ(k))

e αβ(k + 1) = e αβ(k) + B−1g(i αβ(k)− Ai αβ(k− 1) + ηSign(i αβ(k− 1)))

i αβ(k) = i αβ(k)− iαβ(k)

 Sliding Mode Observer

1-285

eαβ(k) = e αβ(k)− eαβ(k)

If the back EMF observer fulfils the conditions eαβ(k + 1)− eαβ(k) ≤ m and g ∈ (0, 1), there exists a k0,
such that:

eαβ(k) < m
g

If the sliding mode observer fulfils these conditions:

• g ∈ (0, 1)
• eαβ(k + 1)− eαβ(k) ≤ m
• η > bm

g

then there exists a k=k0, such that for k≥k0:

i αβ(k) ≤ η + bm
g

where:

• eα and iα are the stator back EMF and current for the α axis
• eβ and iβ are the stator back EMF and current for the β axis
• ẽα and ĩα are the errors in the stator back EMF and current for the α axis
• ẽβ and ĩβ are the errors in the stator back EMF and current for the β axis
• vα and vβ are the stator supply voltages
• R is the stator resistance
• L is the stator inductance
• g is the back EMF observer gain
• η is the current observer gain
• ωe is the electrical angular velocity
• Ts is the sampling period
• k is the sample count

Tuning

Use these steps to tune the block using the Current observer gain (η) and Back-emf observer
gain (g) parameters.

• Select a back-emf observer gain (g) value such that g ∈ (0, 1). Bringing g close to the value 1,
results in less error in the estimated back-emf. However, this makes convergence slow.

• Select a value of m based on the block sample time and maximum slope of the operating back-emf
(such that eαβ(k + 1)− eαβ(k) ≤ m).

• Select a current observer gain (η) value based on b, m, and g (such that η > bm
g).

Note The block functions correctly when you tune the sliding mode observer gains.

1 Blocks

1-286

When using open-loop control to run a motor, compute the rotor position using both sliding mode
observer and an actual sensor hardware and compare the computed position values. If the difference
is acceptable, the block functions correctly. Otherwise, manually tune the sliding mode observer gains
to ensure that the block functions accurately.

The transition from open-loop control to closed-loop control may fail due to noise in the currents and
voltages. To make a successful transition, try reducing the value of the Filter cut-off frequency
(Hz) parameter.

Ports
Input

Vα — α-axis voltage
scalar

Voltage component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Vβ — β-axis voltage
scalar

Voltage component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iα — α-axis current
scalar

Current component along the α-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Iβ — β-axis current
scalar

Current component along the β-axis of the stationary αβ reference frame.
Data Types: single | double | fixed point

Rst — Reset the block
scalar

The pulse (true value) that resets and restarts the processing of the block algorithm.
Data Types: single | double | fixed point

Output

θe — Electrical position of PMSM
scalar

The estimated electrical position of the rotor.
Data Types: single | double | fixed point

 Sliding Mode Observer

1-287

⍵m — Mechanical speed of PMSM
scalar

The estimated mechanical speed of the rotor.
Data Types: single | double | fixed point

Parameters
Input units — Unit of block inputs
SI unit (default) | Per-unit

Unit of the input voltage and current components along the α-axis and β-axis of the stationary αβ
reference frame.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Motor parameters

Stator resistance (ohm) — Resistance
0.36 (default) | scalar

Stator phase winding resistance (in ohm).

Stator inductance (H) — Inductance
0.2e-3 (default) | scalar

Stator phase winding inductance (in Henry).

Maximum application speed (RPM) — Maximum supported speed
6000 (default) | scalar

Maximum speed (in RPM) that the block can support. For a speed beyond this value, the block
generates incorrect outputs.

Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Base voltage (V) — Nominal voltage corresponding to one per unit
13.8564 (default) | scalar

The maximum phase voltage applied to the PMSM. For details, see “Per-Unit System”.

Base current (A) — Nominal current corresponding to one per unit
21.4286 (default) | scalar

The maximum measurable current supplied to the PMSM. For details, see “Per-Unit System”.

Note The Sliding Mode Observer block might occasionally display the warning message 'Wrap on
overflow detected.'

1 Blocks

1-288

Observer Parameters

Back-emf observer gain — Sliding mode observer gain for back-emf
0.9 (default) | scalar

The gain that ensures the convergence of the back-emf observer.

Current observer gain — Sliding mode observer gain for current
0.50881 (default) | scalar

The gain that ensures the convergence of the current observer.

Filter cut-off frequency (Hz) — Cut-off frequency of internal filter
1200 (default) | scalar

The cut-off frequency of the internal low-pass IIR filter. The cut-off frequency value must be greater
than or equal to the maximum electrical frequency.

Click Compute default parameters to calculate approximate observer gains and the filter
coefficient and update these fields. For this calculation, we set g to 0.9, computed m at twice the
rated speed, and set η to 1.1 bm

g .

Datatypes

Position unit — Unit of position output
Radians (default) | Degrees | Per unit

Unit of the position output.

Position data type — Data type of position output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the position output.

Speed unit — Unit of speed output
RPM (default) | Degrees/sec | Radians/sec | Per unit

Unit of the speed output.

Speed data type — Data type of speed output
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of the speed output.

Version History
Introduced in R2021b

 Sliding Mode Observer

1-289

References
[1] T. Bernardes, V. F. Montagner, H. A. Gründling, and H. Pinheiro, "Discrete-Time Sliding Mode

Observer for Sensorless Vector Control of Permanent Magnet Synchronous Machine," in IEEE
Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1679-1691, 2014

[2] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[3] J. Liu and X. Wan, "Advanced Sliding Mode Control for Mechanical Systems". Springer-Verlag
Berlin Heidelberg, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Flux Observer | Clarke Transform | Inverse Park Transform | Sine-Cosine Lookup | PI Controller

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-290

LUT based PMSM Control Reference
Generate lookup-table-based control reference currents for field oriented control of permanent
magnet synchronous motor
Library: Motor Control Blockset / Controls / Control Reference

Description
The LUT based PMSM Control Reference block generates the d-axis and q-axis reference currents for
field-oriented control and field-weakening control of a permanent magnet synchronous motor
(PMSM). The block accepts reference torque and feedback mechanical speed and outputs the
corresponding reference current values.

The block uses id(T,ω) and iq(T,ω) lookup tables (LUTs) to generate reference current values.
Depending on the input method you use to specify the motor parameters, the block can either
generate LUTs or use the data you provide.

You can specify the motor parameters using one of these methods.

• Lumped parameters with Ld, Lq, and FluxPM

This method uses the lumped parameters to compute the id and iq LUTs. The block obtains id and iq
for the given ω and T inputs by solving the equations associated with the following curves.

Maximum torque per ampere (MTPA) line (IPMSM),

id2 +
idψm

(Ld− Lq) = iq2 .

MTPA line (SPMSM), id = 0.

Constant torque trajectory

iq = T
1.5Pp(ψm + (Ld− Lq)id) .

Current limit curve

id2 + iq2 = imax
2 .

Voltage limit curve

VDC
3

2
= (idRs− ωeLqiq)2 + (iqRs + ωeLdid + ωeψm)2 .

• When the motor is operating within the voltage constraints, the block solves for the
intersection of MTPA line and constant torque trajectory.

 LUT based PMSM Control Reference

1-291

• When the motor is operating beyond the voltage constraints, the block solves for the
intersection of voltage constraint curve and the constant torque trajectory.

After computing the id and iq tables from a grid of ω and T values, the block uses interpolation to
find idref and iqref for any ω and T inputs that lie within the range of table values. The table values
are clipped for ω and T values beyond the boundaries.

• Nonlinear model with d-axis and q-axis stator winding inductances and permanent magnet flux
linkage lookup tables

This method uses an approach similar to the previous method, except that the block updates the
values for Ld(id,iq), Lq(id,iq), and FluxPM(id,iq) with every iteration it computes id and iq. The block
iterates these computations until the id and iq values converge.

• Nonlinear model with d-axis and q-axis flux linkage lookup tables

Use this option when you want to manually provide the id(T,ω) and iq(T,ω) tables. Typically, you
obtain these tables through simulations or dyno tests. You can also generate these tables using the
mcbGenerateTables function provided with the Motor Control Blockset software.

For a detailed set of equations and assumptions that Motor Control Blockset uses for a PMSM, see
“Mathematical Model of PMSM” on page 1-149.

Ports
Input

Tref — Reference torque value
scalar

Reference torque input value (in Nm) for which the block computes the reference current.
Data Types: single | double | fixed point

⍵m — Mechanical speed
scalar

Reference mechanical speed value (in rpm) for which the block computes the reference current.
Data Types: single | double | fixed point

Output

Idref — Reference d-axis current
scalar

Reference d-axis phase current (in Amperes).
Data Types: single | double | fixed point

Iqref — Reference q-axis current
scalar

Reference q-axis phase current (in Amperes).
Data Types: single | double | fixed point

1 Blocks

1-292

Parameters
Motor topology — Type of PMSM
Interior PMSM (default) | Surface PMSM

Type of PMSM based on the placement of the permanent magnets.

Field Weakening control method — Type of field weakening control
CVCP (default) | CCCP | VCLMT | None

Type of field weakening control, specified as one of these:

• CVCP — Constant voltage constant power (CVCP) control method.
• CCCP — Constant current constant power (CCCP) control method.
• VCLMT — Voltage and current limited maximum torque (VCLMT) control method.

You can configure this parameter only in surface PMSMs with the motor parameters specified as
linear lumped parameters. For all other configurations, the block uses the VCLMT control method.

Dependencies

To enable this parameter, set Motor topology to Surface PMSM and Motor parameter input
method to Linear model with lumped parameters.

Number of pole pairs — Number of pole pairs available in motor
4 (default) | scalar

Number of pole pairs available in the motor.

Stator resistance per phase (Ohm) — Resistance of stator phase winding (ohms)
0.36 (default) | scalar

Resistance of the stator phase winding (ohms).

Motor parameter input method — Type of motor parameters
Linear model with lumped parameters (default) | Non-linear model with Ld,Lq and
FluxPM LUTs | Non-linear model with id and iq LUTs

Motor parameters that the block uses to generate the control reference currents.

• Linear model with lumped parameters — Generate current reference using lumped-circuit
values for motor parameters Ld, Lq, and FluxPM.

• Non-linear model with Ld,Lq and FluxPM LUTs — Generate current reference using Ld,
Lq, and FluxPM lookup tables.

• Non-linear model with id and iq LUTs — Generate current reference using id and iq
lookup tables.

Linear Model with Lumped Parameters

Stator d-axis inductance (H) — D-axis stator winding inductance
0.2e-3 (default) | scalar

Stator winding inductance (in henries) along the direct-axis of the rotating dq reference frame.

 LUT based PMSM Control Reference

1-293

Dependencies

To enable this parameter, set Motor parameter input method to Linear model with lumped
parameters.

Stator q-axis inductance (H) — Q-axis stator winding inductance
0.4e-3 (default) | scalar

Stator winding inductance (in henries) along the quadrature-axis of the rotating dq reference frame.

Dependencies

To enable this parameter, set Motor topology to Interior PMSM and Motor parameter input
method to Linear model with lumped parameters.

Permanent magnet flux linkage (Wb) — Permanent magnet flux linkage
6.4e-3 (default) | scalar

Peak permanent magnet flux linkage (in weber).

Dependencies

To enable this parameter, select the Linear model with lumped parameters option in the
Motor parameter input method parameter.

Nonlinear Model with Ld, Lq, and FluxPM Lookup Tables

D-axis current vector (A) — D-axis current lookup vector
[-40, -20, 0, 20] (default) | vector

D-axis current vector used in the Ld, Lq, and FluxPM lookup tables.

Dependencies

To enable this parameter, select the Non-linear model with Ld, Lq and FluxPM LUTs option
in the Motor parameter input method parameter.

Q-axis current vector (A) — Q-axis current lookup vector
[-40, -20, 0, 20, 40] (default) | vector

Q-axis current vector used in the Ld, Lq, and FluxPM lookup tables.

Dependencies

To enable this parameter, select the Non-linear model with Ld, Lq and FluxPM LUTs option
in the Motor parameter input method parameter.

Ld matrix (H) — D-axis inductance lookup data
0.2e-3 * ones(4, 5) (default) | matrix

D-axis inductance lookup table data.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

1 Blocks

1-294

Lq matrix (H) — Q-axis inductance lookup data
0.4e-3 * ones(4, 5) (default) | matrix

Q-axis inductance lookup table data.

Dependencies

To enable this parameter, set Motor topology to Interior PMSM and Motor parameter input
method to Non-linear model with Ld,Lq and FluxPM LUTs.

PM flux linkage matrix (Wb) — Permanent magnet flux linkage lookup data
6.4e-3 * ones(4, 5) (default) | matrix

Permanent magnet flux linkage lookup table data.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with
Ld,Lq and FluxPM LUTs.

Nonlinear Model with id and iq Lookup Tables

Reference torque vector (Nm) — Torque reference lookup vector
[0 0.15 0.3] (default) | vector

Torque reference lookup vector used in id and iq lookup tables (in Nm).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with id
and iq LUTs.

Mechanical speed vector (rpm) — Rotor speed lookup vector
[0 1000 2000 6000] (default) | vector

Rotor speed lookup vector used in id and iq lookup tables (in rpm).

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with id
and iq LUTs.

Reference id matrix (A) — Reference d-axis current lookup data
[0,0,0,-7.1;0,0,0,-7.1;0,0,0,-7.1] (default) | matrix

D-axis current reference lookup table data.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with id
and iq LUTs.

Reference iq matrix (A) — Reference q-axis current lookup data
[0,0,0,0;3.9091,3.9091,3.9091,0;7.1,7.1,7.1,0] (default) | matrix

Q-axis current reference lookup table data.

 LUT based PMSM Control Reference

1-295

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with id
and iq LUTs.

Motor Configuration

Viscous damping coefficient (Nm-s/rad) — Viscous damping coefficient
2.636875217824e-6 (default) | scalar

Viscous damping coefficient Bv of the motor in N·m/(rad/s).

DC bus voltage (V) — DC bus voltage (volts)
24 (default) | scalar

DC bus voltage (volts).

Current Limit (A) — Maximum phase current limit for motor (amperes)
7.1 (default) | scalar

Maximum phase current limit for the motor (amperes).

Input units — Unit of block input values
Per-Unit (PU) (default) | SI Units

Unit of the block input values.

Base voltage (V) — Nominal voltage limit
24/sqrt(3) (default) | scalar

Base voltage (in volts) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base current (A) — Nominal current limit
19.3 (default) | scalar

Base current (in amperes) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base speed (rpm) — Nominal speed limit
4107 (default) | scalar

Base speed (in rpm) for per-unit system.
Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Base torque (Nm) — Nominal torque limit
0.74112 (default)

Torque corresponding to 1 per-unit. See “Per-Unit System” page for more details.

1 Blocks

1-296

You cannot configure this parameter. Its value is internally computed using the other parameters.

Dependencies

To enable this parameter, set Input units to Per-Unit (PU).

Allow scaled-down motor parameters with CodeGen (higher precision with Fixed-
Point data type) — Scale down internal parameters to match per-unit scale
on (default) | off

Option to scale down internal parameters to match per-unit scale when generating code.

• When you enable this option, the block scales down the internal constants and coefficients to
match the per-unit scale. This allows for higher precision when you use the fixed-point data type.
If you use this option with the single or double data type, some precision loss can occur depending
on the number of bits allotted to the integer portion.

• When you disable this option, the block converts all the constants and coefficients used for
internal calculations to SI units and then converts them back to the PU scale. This allows you to
update the lookup table values in the generated code, typically, for applications such as controller
tuning or end-of-line operations. You can also update the values manually for debugging or reusing
previously generated code.

Dependencies

To enable this parameter, set Motor parameter input method to Non-linear model with id
and iq LUTs and Input units to Per-Unit (PU).

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
PMSM FeedForward Control | PMSM Torque Estimator

 LUT based PMSM Control Reference

1-297

PMSM Configuration
Configure PMSM system parameters
Library: Motor Control Blockset HDL Support / Electrical Systems /

Motors

Description
The PMSM Configuration block generates the configuration signal for a permanent magnet
synchronous machine/motor (PMSM). This signal can be used to update parameters of PMSM blocks
that support FPGA deployment, for example, PMSM HDL.

Ports
Output

Config — Block configuration signal
vector

Configuration signal for permanent magnet synchronous machine/motor (PMSM).
Data Types: single | double | fixed point

Parameters
Block Options

Mechanical input configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates
Output Port

Torque LdTrq MtrSpd
Speed Spd MtrTrq

Sample Time (Ts) — Sample time for discrete integration
1e-6 (default) | scalar

Integration sample time for discrete simulation, in s.

Parameters

Number of pole pairs — Pole pairs
4 (default) | scalar

1 Blocks

1-298

Motor pole pairs, P.

Stator phase resistance per phase (Ohm) — Resistance
0.02 (default) | scalar

Stator phase resistance per phase, Rs, in ohm.

Stator d-axis inductance (H) — Inductance
1.7e-3 (default) | scalar

Stator inductance, Ld, in H.

Stator q-axis inductance (H) — Inductance
3.2e-3 (default) | scalar

Stator inductance, Lq, in H.

Permanent flux linkage constant (lambda_pm) — Flux
0.2205 (default) | scalar

Permanent flux linkage constant, λpm, in Wb.

Inertia (kgm^2) — Physical Inertia
0.0027 (default) | scalar

Physical inertia of the motor, J, in kg.m^2.

Viscous damping (Nm/rad/s) — Viscous damping
4.924e-4 (default) | scalar

Viscous damping of the motor, F, in N·m/(rad/s).

Static friction (Nm) — Static friction
0 (default) | scalar

Static friction of the motor, Tf, in N·m.

Version History
Introduced in R2022b

See Also
PMSM HDL | Interior PMSM | Surface Mount PMSM

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 PMSM Configuration

1-299

PMSM HDL
Three-phase permanent magnet synchronous motor with sinusoidal back electromotive force
Library: Motor Control Blockset HDL Support / Electrical Systems /

Motors

Description
The PMSM HDL block implements a three-phase permanent magnet synchronous motor (PMSM) with
sinusoidal back electromotive force. The block uses the three-phase input voltages to regulate the
individual phase currents, allowing control of the motor torque or speed.

The block generates code for fixed-step double- and single-precision targets using the Sample Time
(s) parameter. It supports code generation for FPGA deployment. The block generates HDL
compatible code.

The block accepts the PMSM parameters and mode of operation using the Config input port.
Optionally, you may use the PMSM Configuration block to generate the required configuration signal
for the Config input port.

Motor Construction

These figures show the interior and surface-mount PMSM construction with a single pole pair on the
motor.

The motor magnetic field due to the permanent magnets creates a sinusoidal rate of change of flux
with motor angle.

For the axes convention, the a-phase and permanent magnet fluxes are aligned when motor angle θr
is zero.

1 Blocks

1-300

Three-Phase Sinusoidal Model Electrical System

The block implements these equations, expressed in the motor flux reference frame (dq frame). All
quantities in the motor reference frame are referred to the stator.

ωe = Pωm

d
dt id = 1

Ld
vd−

R
Ld

id +
Lq
Ld

Pωmiq

d
dt iq = 1

Lq
vq−

R
Lq

iq−
Ld
Lq

Pωmid−
λpmPωm

Lq

Te = 1.5P[λpmiq + (Ld− Lq)idiq]

The Lq and Ld inductances represent the relation between the phase inductance and the motor
position due to the saliency of the motor magnets. For the surface mount PMSM, Ld = Lq.

The equations use these variables.

Lq, Ld q- and d-axis inductances (H)
R Resistance of the stator windings (ohm)
iq, id q- and d-axis currents (A)
vq, vd q- and d-axis voltages (V)
ωm Angular mechanical velocity of the motor (rad/s)
ωe Angular electrical velocity of the motor (rad/s)
λpm Permanent magnet flux linkage (Wb)
Ke Back electromotive force (EMF) (Vpk_LL/krpm, where Vpk_LL is the peak voltage

line-to-line measurement)
Kt Torque constant (N·m/A)
P Number of pole pairs
Te Electromagnetic torque (Nm)
Θe Electrical angle (rad)

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)

 PMSM HDL

1-301

Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrTrnsfrd — Power
transferred between blocks

• Positive signals indicate flow
into block

• Negative signals indicate
flow out of block

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrNotTrnsfrd — Power
crossing the block boundary, but
not transferred

• Positive signals indicate an
input

• Negative signals indicate a
loss

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − 3
2 (Rsisd

2

+ Rsisq
2)

PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrStored — Stored energy
rate of change

• Positive signals indicate an
increase

• Negative signals indicate a
decrease

PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

Rs Stator resistance (ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)

1 Blocks

1-302

ωm Angular mechanical velocity of the motor (rad/s)
F Combined motor and load viscous damping N·m/(rad/s)
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

Config — Block configuration signal
vector

Configuration signal for the PMSM HDL block containing block configuration parameters.
Data Types: single | double | fixed point

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.
Data Types: single | double | fixed point

LdTrq/Spd — Load torque on motor or speed of motor shaft
scalar

This port supports one of these inputs:

• Load torque on the motor shaft, Tm, in N·m.
• Angular velocity of the motor, ωm, in rad/s.

Data Types: single | double | fixed point

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V

 PMSM HDL

1-303

Signal Description Variable Units
MtrSpd Angular mechanical velocity of the

motor
ωm rad/s

MtrPos Motor mechanical angular position θm rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElecLo
ss

Resistive power loss Pelec W

PwrMechLo
ss

Mechanical power loss Pmech W

PwrStored PwrMtrSto
red

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

Torque — Motor torque
scalar

Motor torque, Tmtr, in N·m.

Speed — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

MtrElecAngle — Motor electrical angle
scalar

Electrical position of the motor, θe, in rad.
Data Types: single | double | fixed point

Parameters
Block Options

Sample time (s) — Sample time after which block executes again
1e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Version History
Introduced in R2022b

1 Blocks

1-304

See Also
PMSM Configuration | Interior PMSM | Surface Mount PMSM

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 PMSM HDL

1-305

Induction Motor Configuration
Configure induction motor system parameters
Library: Motor Control Blockset HDL Support / Electrical Systems /

Motors

Description
The Induction Motor Configuration block generates the configuration signal for an induction
machine/motor. This signal can be used to update parameters of induction motor blocks that support
FPGA deployment, for example, Induction Motor HDL.

Ports
Output

Config — Block configuration signal
vector

Configuration signal for induction machine/motor.
Data Types: single | double | fixed point

Parameters
Block Options

Port configuration — Select port configuration
Torque (default) | Speed

This table summarizes the port configurations.

Port Configuration Creates Input Port Creates
Output Port

Torque LdTrq MtrSpd
Speed Spd MtrTrq

Sample Time (Ts) — Sample time for discrete integration
1e-6 (default) | scalar

Integration sample time for discrete simulation, in s.

Parameters

Number of pole pairs — Pole pairs
2 (default) | scalar

1 Blocks

1-306

Motor pole pairs, P.

Stator resistance (Ohm) — Stator resistance
1.77 (default) | scalar

Stator resistance, Rs, in ohm.

Leakage inductance (H) — Stator leakage inductance
0.0139 (default) | scalar

Stator leakage inductance, Lls, in H.

Rotor resistance (Ohm) — Rotor resistance
1.34 (default) | scalar

Rotor resistance, Rr, in ohm.

Leakage inductance (H) — Rotor leakage inductance
0.0121 (default) | scalar

Rotor leakage inductance, Llr, in H.

Magnetizing inductance (H) — Inductance
0.3876 (default) | scalar

Magnetizing inductance, Lm, in H.

Physical Inertia (kg*m^2) — Physical inertia
0.001 (default) | scalar

Physical inertia of the motor, J, in kg.m^2.

Viscous damping (N*m/rad/s) — Viscous damping
0 (default) | scalar

Viscous damping of the motor, F, in N·m/(rad/s).

Static friction (N*m) — Static friction
0 (default) | scalar

Static friction of the motor, Tf, in N·m.

Version History
Introduced in R2022b

See Also
Induction Motor HDL | Induction Motor

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

 Induction Motor Configuration

1-307

Induction Motor HDL
Three-phase induction motor
Library: Motor Control Blockset HDL Support / Electrical Systems /

Motors

Description
The Induction Motor HDL block implements a three-phase induction motor. The block uses the three-
phase input voltages to regulate the individual phase currents, allowing control of the motor torque
or speed.

The block generates code for fixed-step double- and single-precision targets using the Sample Time
(s) parameter. It supports code generation for FPGA deployment. The block generates HDL
compatible code.

The block accepts the induction motor parameters and mode of operation using the Config input
port. Optionally, you may use the Induction Motor Configuration block to generate the required
configuration signal for the Config input port.

Three-Phase Sinusoidal Model Electrical System

The block implements equations that are expressed in a stationary rotor reference (qd) frame. The d-
axis aligns with the a-axis. All quantities in the rotor reference frame are referred to the stator.

1 Blocks

1-308

The block uses these equations to calculate the electrical speed (ωem) and slip speed (ωslip).

ωem = Pωm
ωslip = ωsyn− ωem

To calculate the dq rotor electrical speed with respect to the rotor A-axis (dA), the block uses the
difference between the stator a-axis (da) speed and slip speed:

ωdA = ωda− ωem

To simplify the equations for the flux, voltage, and current transformations, the block uses a
stationary reference frame:

ωda = 0
ωdA = − ωem

Calculation Equation
Flux d

dt
λsd
λsq

=
vsd
vsq

− Rs
isd
isq

− ωda
0 −1
1 0

λsd
λsq

d
dt

λrd
λrq

=
vrd
vrq

− Rr
ird
irq

− ωdA
0 −1
1 0

λrd
λrq

λsd
λsq
λrd
λrq

=

Ls 0
0 Ls

Lm 0
0 Lm

Lm 0
0 Lm

Lr 0
0 Lr

isd
isq
ird
irq

Current isd
isq
ird
irq

= 1
Lm

2 − LrLs

−Lr 0
0 −Lr

Lm 0
0 Lm

Lm 0
0 Lm

−Ls 0
0 −Ls

λsd
λsq
λrd
λrq

Inductance Ls = Lls + Lm
Lr = Llr + Lm

Electromagnetic torque Te = PLm(isqird− isdirq)

 Induction Motor HDL

1-309

Calculation Equation
Power invariant dq transformation to
ensure that the dq and three phase
powers are equal

vsd
vsq

= 2
3

cos(Θda) cos(Θda−
2π
3) cos(Θda + 2π

3)

−sin(Θda) −sin(Θda−
2π
3) −sin(Θda + 2π

3)

va
vb
vc

ia
ib
ic

= 2
3

cos(Θda) −sin(Θda)

cos(Θda−
2π
3)

cos(Θda + 2π
3)

−sin(Θda−
2π
3)

−sin(Θda + 2π
3)

isd
isq

The equations use these variables.

ωm Angular velocity of the rotor (rad/s)
ωem Electrical rotor speed (rad/s)
ωslip Electrical rotor slip speed (rad/s)
ωsyn Synchronous rotor speed (rad/s)
ωda dq stator electrical speed with respect to the rotor a-axis (rad/s)
ωdA dq stator electrical speed with respect to the rotor A-axis (rad/s)
Θda dq stator electrical angle with respect to the rotor a-axis (rad)
ΘdA dq stator electrical angle with respect to the rotor A-axis (rad)
Lq, Ld q- and d-axis inductances (H)
Ls Stator inductance (H)
Lr Rotor inductance (H)
Lm Magnetizing inductance (H)
Lls Stator leakage inductance (H)
Llr Rotor leakage inductance (H)
vsq, vsd Stator q- and d-axis voltages (V)
isq, isd Stator q- and d-axis currents (A)
λsq, λsd Stator q- and d-axis flux (Wb)
irq, ird Rotor q- and d-axis currents (A)
λrq, λrd Rotor q- and d-axis flux (Wb)
va, vb, vc Stator voltage phases a, b, c (V)
ia, ib, ic Stator currents phases a, b, c (A)
Rs Resistance of the stator windings (Ohm)
Rr Resistance of the rotor windings (Ohm)
P Number of pole pairs
Te Electromagnetic torque (Nm)

1 Blocks

1-310

Mechanical System

The motor angular velocity is given by:

d
dtωm = 1

J Te− Tf − Fωm− Tm

dθm
dt = ωm

The equations use these variables.

J Combined inertia of motor and load (kgm^2)
F Combined viscous friction of motor and load (N·m/(rad/s))
θm Motor mechanical angular position (rad)
Tm Motor shaft torque (Nm)
Te Electromagnetic torque (Nm)
Tf Motor shaft static friction torque (Nm)
ωm Angular mechanical velocity of the motor (rad/s)

Power Accounting

For the power accounting, the block implements these equations.

Bus Signal Description Variab
le

Equations

PwrIn
fo

PwrMtr Mechanical
power

Pmot Pmot = − ωmTe

PwrBus Electrical
power

Pbus Pbus = vania + vbnib
+ vcnic

PwrElec
Loss

Resistive
power loss

Pelec Pelec = − (Rsisd
2 + Rsisq

2

+ − Rrird
2 + Rrirq

2)
PwrMech
Loss

Mechanical
power loss

Pmech When Port
Configuration is set to
Torque:

Pmech = −
ωm

2 F + ωm Tf

When Port
Configuration is set to
Speed:

Pmech = 0
PwrMtrS
tored

Stored motor
power

Pstr Pstr = Pbus + Pmot +
 Pelec + Pmech

The equations use these variables.

 Induction Motor HDL

1-311

Rs Stator resistance (Ohm)
Rr Rotor resistance (Ohm)
ia, ib, ic Stator phase a, b, and c current (A)
isq, isd Stator q- and d-axis currents (A)
van, vbn, vcn Stator phase a, b, and c voltage (V)
ωm Angular mechanical velocity of the rotor (rad/s)
F Combined motor and load viscous damping (N·m/(rad/s))
Te Electromagnetic torque (Nm)
Tf Combined motor and load friction torque (Nm)

Ports
Input

Config — Block configuration signal
vector

Configuration signal for the Induction Motor HDL block containing block configuration parameters.
Data Types: single | double | fixed point

PhaseVolt — Stator terminal voltages
1-by-3 array

Stator terminal voltages, Va, Vb, and Vc, in V.
Data Types: single | double | fixed point

LdTrq/Spd — Load torque on motor or speed of motor shaft
scalar

This port supports one of these inputs:

• Load torque on the motor shaft, Tm, in N·m.
• Angular velocity of the motor, ωm, in rad/s.

Data Types: single | double | fixed point

Output

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Variable Units
IaStator Stator phase current A ia A
IbStator Stator phase current B ib A
IcStator Stator phase current C ic A

1 Blocks

1-312

Signal Description Variable Units
IdSync Direct axis current id A
IqSync Quadrature axis current iq A
VdSync Direct axis voltage vd V
VqSync Quadrature axis voltage vq V
MtrSpd Angular mechanical velocity of the

rotor
ωm rad/s

MtrMechPos Rotor mechanical angular position θm rad
MtrPos Rotor electrical angular position θe rad
MtrTrq Electromagnetic torque Te N·m
PwrInfo PwrTrnsfrd PwrMtr Mechanical power Pmot W

PwrBus Electrical power Pbus W
PwrNotTrns
frd

PwrElec
Loss

Resistive power loss Pelec W

PwrMech
Loss

Mechanical power loss Pmech W

PwrStored PwrMtrS
tored

Stored motor power Pstr W

PhaseCurr — Phase a, b, c current
1-by-3 array

Phase a, b, c current, ia, ib, and ic, in A.

Torque — Motor torque
scalar

Motor torque, Tmtr, in N·m.

Speed — Motor speed
scalar

Angular speed of the motor, ωmtr, in rad/s.

MtrElecAngle — Motor electrical angle
scalar

Electrical position of the motor, θdq, in rad.
Data Types: single | double | fixed point

Parameters
Sample time (s) — Sample time after which block executes again
1e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

 Induction Motor HDL

1-313

Version History
Introduced in R2022b

See Also
Induction Motor Configuration | Induction Motor

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-314

SRM Commutation
Generate switching sequences for n-phase switched reluctance motor (SRM)
Library: Motor Control Blockset / Controls / Control Reference

Description
The SRM Commutation block implements a commutation system that generates switching sequences
to energize the stator windings of an n-phase switched reluctance motor (SRM).

The block supports either 3, 4, 5, or 6 phase SRM.

The block uses electrical motor position (θe), electrical turn-on position (θeOn), and electrical turn-off
position (θeOff) to generate n switching sequences (a vector of size n) for an n-phase SRM.

Each switching sequence (that forms a pulse train) can be used to control (turn On or Off) the
corresponding motor phase.

Each pulse in a switching sequence represents the activation period of the phase. A range of motor
position for which a phase activates is known as dwell angle, θdwell = θeOff - θeOn. When the motor
electrical position falls within the dwell angle of a phase, the block outputs 1 as a mechanism to
activate this phase.

For first stator phase or phase A:

 SRM Commutation

1-315

Block output Condition
0 if θe < θeOn or θe > θeOff
1 if θeOn ≤ θe ≤ θeOff

For subsequent phases, the block output (switching sequence) has an offset of (m⨯2π)/n for mth
motor phase (m is a value between 0 to n and n is the total number of motor phases).

1 Blocks

1-316

 SRM Commutation

1-317

Therefore, for an n-phase SRM, the block output is a combination of n such sequences (or pulse
trains), which can be used with position sensor feedback and control loops to control the motor
speed.

The direction of motor rotation depends on the sequence of excitation of the stator phases. You can
use the block output to change this excitation sequence by providing appropriate inputs at θeOn and
θeOff.

The block expects that electrical motor position (θe) input is aligned with the first phase of the SRM
(phase a or phase 1). The block internally computes the remaining electrical positions aligned with
the subsequent phases and generates switching sequences for them. For example, for a 3-phase SRM,
if you derive θe input from the mechanical motor position aligned with motor phase a, then the block
internally computes the required electrical positions for phases b and c and generates the
commutation outputs for all the 3 phases.

For example, if you derive (θe) input from the mechanical motor position aligned with motor phase a,
then the block automatically computes the phase b and c electrical positions for the 3-phase SRM.

Note The block inputs should have same position units.

Ports
Input

θe — Electrical motor position
scalar

Electrical position of the motor measured with respect to phase a or first phase of the motor. Value
should lie between 0-2π radians or 0-360 degrees or 0-1 per-unit.

1 Blocks

1-318

Data Types: single | double | fixed point

θeOn — Turn on electrical motor position
scalar

Motor electrical position for phase a (phase used by θe input) at which the switching sequence turns
0 to 1 and energizes the corresponding phase. Value should lie between 0-2π radians or 0-360
degrees or 0-1 per-unit.
Data Types: single | double | fixed point

θeOff — Turn on electrical motor position
scalar

Motor electrical position for phase a (phase used by θe input) at which the switching sequence turns
1 to 0 and de-energizes the corresponding phase. Value should lie between 0-2π radians or 0-360
degrees or 0-1 per-unit.
Data Types: single | double | fixed point

Output

Ctrl — Control signal
vector

Combination of switching sequences that you can use to switch each phase ON and OFF to drive the
motor.
Data Types: Boolean

Parameters
Number of motor phases — Number of phases in SRM
3 (default) | 4 | 5 | 6

The number of phases available in the stator windings of SRM.

Input position units — Unit of position inputs
Radians (default) | Per unit | Degrees

Units used by θe, θeOn, and θeOff inputs.

Version History
Introduced in R2022b

See Also
PI Controller | Switched Reluctance Machine

Topics
“Open-Loop and Closed-Loop Control”

 SRM Commutation

1-319

Pulsating High Freq Observer
Estimate initial rotor electrical position of interior PMSM by injecting pulsating high frequency (PHF)
Library: Motor Control Blockset / Sensorless Estimators

Description
The PHF Observer block estimates initial position (in electrical radians) of a stationary interior
PMSM by using pulsating high frequency (PHF) injection and dual pulse (DP) techniques. In addition,
the block also detects real-time position when the rotor runs using (low-speed) closed-loop control.

The block determines the best possible initial estimation for the rotor position using open-loop PHF
injection, which it uses further for running closed-loop PHF.

The block executes closed-loop PHF by injecting a high frequency signal into the estimated rotor
position to determine the actual rotor position, without spinning the motor. This technique works
when the motor has a saliency ratio (Lq/Ld) greater than 1. Due to a limitation in the PHF method, the
estimated position may show ambiguity of π (pi). The dual-pulse (DP) method uses polarity detection
to resolve the ambiguity of π and applies π compensation if there is an error. The estimated rotor
position ranges from 0 to 2π electrical radians.

The block can run in the following 2 stages:

1 Stage 1 – initial position estimation (IPE), which includes 3 parts.
2 Stage 2 – closed-loop pulsating high-frequency (PHF) injection.

Stage 1 focuses on determining the initial position of rotor when the rotor is stationary. This stage
includes the following 3 parts:

Part A: Find best possible initial estimation

The block relies on pulsating high frequency (PHF) injection technique. PHF injection needs initial
estimation to start the algorithm.

When we use only one initial estimation, θi_est, (for PHF) for all possible rotor actual positions, the
algorithm may not work accurately for certain rotor actual positions if motor has low saliency. These
ambiguous positions are:

1 When θactual lies in the range θi_est + π
2 − 0.1 , θi_est + π

2 + 0.1

2 When θactual lies in the range θi_est − π
2 − 0.1 , θi_est− π

2 + 0.1

3 When θactual lies in the range θi_est + π − 0.1 , θi_est + π + 0.1

1 Blocks

1-320

To make PHF work for motors with low saliency, we need to pick different initial estimation for
different rotor actual positions.

When executing this part, the block picks the best possible initial estimation among these three
alternatives:

1 θi_est = 0
2 θi_est = 2π/3
3 θi_est = -2π/3

Therefore, the block injects 3 high frequency voltage signals (approximately 2000 KHz) across the
preceding 3 θest values and measures the resulting iq currents. For each iq:

iq ∝ PHF_signal × sin 2θerr

Therefore, iq ∝ sin 2θerr or iq ∝ sin 2(θactual− θi_est)

Where:

θi_est — initial estimation of rotor position (which can be either 0, 2π/3, or -2π/3) (in degrees, per-
unit, or radians)

θactual — actual rotor position (in degrees, per-unit, or radians)

θerr=θactual-θi_est (in degrees, per-unit, or radians)

Let us define:

iq1=iq for θi_est=0

iq2=iq for θi_est=2π/3

iq3=iq for θi_est=-2π/3

For θi_est=0, when we vary θactual from 0 to 2π, we find that iq1 ∝ sin 2(θactual− 0) is maximum
among the preceding 3 iq currents when the rotor lies in the following 4 highlighted regions.

 Pulsating High Freq Observer

1-321

If θi_est=0 is used for all θactual=0 to 2π, the algorithm would have failed for following ambiguous
regions (when motor saliency is low):

1 When θactual lies in the range 0 + π
2 − 0.1 , 0 + π

2 + 0.1

2 When θactual lies in the range 0 − π
2 − 0.1 , 0 − π

2 + 0.1

3 When θactual lies in the range 0 + π − 0.1 , 0 + π + 0.1

Because these ambiguous regions are not present in the preceding 4 regions, we eliminate the
regions where the algorithm might fail.

For θi_est=(2π/3), when we vary θactual from 0 to 2π, we find that iq2 ∝ sin 2(θactual−
2π
3) is

maximum among the 3 iq currents when the rotor lies in the following 4 highlighted regions.

1 Blocks

1-322

If θi_est=(2π/3) is used for all θactual=0 to 2π, the algorithm would have failed for following
ambiguous regions (when motor saliency is low):

1 When θactual lies in the range 2π
3 + π

2 − 0.1 , 2π
3 + π

2 + 0.1

2 When θactual lies in the range 2π
3 − π

2 − 0.1 , 2π
3 − π

2 + 0.1

3 When θactual lies in the range 2π
3 + π − 0.1 , 2π

3 + π + 0.1

Because these ambiguous regions are not present in the preceding 4 regions, we eliminate the
regions where the algorithm might fail.

For θi_est=-(2π/3), when we vary θactual from 0 to 2π, we find that iq3 ∝ sin 2(θactual− − 2π
3) is

maximum among the 3 iq currents when the rotor lies in the following 4 highlighted regions.

 Pulsating High Freq Observer

1-323

If θi_est=-(2π/3) is used for all θactual=0 to 2π, the algorithm would have failed for following
ambiguous regions (when motor saliency is low):

1 When θactual lies in the range −2π
3 + π

2 − 0.1 , −2π
3 + π

2 + 0.1

2 When θactual lies in the range −2π
3 − π

2 − 0.1 , −2π
3 − π

2 + 0.1

3 When θactual lies in the range −2π
3 + π − 0.1 , −2π

3 + π + 0.1

Because these ambiguous regions are not present in the preceding 4 regions, we eliminate the
regions where the algorithm might fail.

Therefore, using this approach we have three sets of regions corresponding to 3 different initial
estimates. These three sets or regions cover all the motor sectors where the rotor may lie:

1 Blocks

1-324

In part A, the block picks the θi_est corresponding to the maximum Iq current value among iq1, iq2, and
iq3 for Part B.

Part B: Pulsating High-Frequency (PHF) Method

After determining the best possible initial estimate θi_est, the block injects a sinusoidal high-frequency
voltage along the finalized (θest | t=0) = θi_est (resulting in unbalanced three-phase voltage in the
motor) and reads the current response from the motor. The block then performs numerical analysis of
the resulting stator current response to compute the initial position of the stationary rotor (in
electrical radians) by making corrections to θest.

The block performs iterative tests on the motor. Therefore, when the block executes, the estimated
position is initially θi_est, but it rises steadily to saturate at the actual rotor-angle (with respect to a-
axis).

The PHF method has a limitation due to which it might compute rotor position with an ambiguity of π.
If the rotor lies in the range θactual = 0, π

2 ∪ 3π
2 , 2π electrical radians (region 1), the estimated

position is accurate (π compensation is not required).

 Pulsating High Freq Observer

1-325

If the rotor lies in the range θactual = π
2 , 3π

2 electrical radians (region 2), the estimated position
shows an ambiguity of π (π compensation is required).

1 Blocks

1-326

Therefore, the block uses dual-pulse method to determine if the estimated position needs π
compensation.

Part C: Dual-Pulse (DP) Method

The block injects two very short duration voltage pulses (with the same width and magnitude) into
the following positions:

• Pulse-1 is injected in the rotor position estimated in Part B
• Pulse-2 is injected in the rotor position estimated in Part B + π

Because pulse width is very short, the motor does not run, and the rotor remains stationary after
pulse injection.

The interaction between the resulting stator magnetic flux and the rotor permanent magnets results
in two current impulses along the d-axis of the rotor that rise and fall quickly.

 Pulsating High Freq Observer

1-327

Because the stator core is saturated, it shows a nonlinear behaviour. A small Ld results in higher
current Id, and a high Ld results in smaller current Id. Therefore, the Id current impulses generated by
Pulse-1 and Pulse-2 show different peak values.

Note The pulse duration of the injected voltage pulses is large enough to obtain a measurable
difference between the peak current values. At the same time, the duration is not too high (when the
pulse duration exceeds a certain limit, the rotor may start spinning).

The block computes the difference between the peak values of the two current impulses ΔId to
determine if the position estimated in Part A needs π compensation.

ΔId = |Id1| - |Id2|

PHF injection benefits the use cases that require rotor to remain stationary or when the position
estimation must occur without starting the motor. PHF injection technique also benefits cases where
open loop runs to estimate position (before transition to closed loop speed control) needs to be
avoided or requirements where the motor should begin directly in closed loop operation. Stage 1
algorithm addresses these use cases by estimating position while keeping the rotor stationary and
avoiding open loop run.

After Stage 1 completes, you can continue to run the block in Stage 2 where it computes the rotor
position while the motor runs using closed loop control (for example, field-oriented control or FOC).
Using the Stage 2 algorithm (closed-loop PHF injection), the block can continue to inject pulsating
high frequency (as described in Part B) and use the numerical analysis of the resulting stator current
response to compute and track the rotor position during closed-loop operation.

Ports
Input

Iab hf — PHF current response
vector

The high frequency (phase a and b) current feedback from motor in response to the PHF voltage
injection, in Amperes or per-unit.

1 Blocks

1-328

Data Types: single | double | fixed point

Enable — Enable block
scalar

The port supports one of the following inputs:

• 1 — Enables block operation
• 0 — Disables the block

Data Types: Boolean

θin — Initial rotor position
scalar

Initial rotor position input when the block skips the Stage 1 initial position estimation (IPE) operation,
in radians, degrees, or per-unit.

The unit depends on the Position unit parameter.
Data Types: single | double | fixed point

IPEEn — Enable Stage 1 initial position estimation (IPE) operation
scalar

The port supports one of the following inputs:

• 1 — Enable the block to run Stage 1 initial position estimation (IPE) followed by Stage 2 closed-
loop pulsating high-frequency (PHF) injection

• 0 — Enable the block to skip Stage 1 directly run Stage 2 closed-loop pulsating high-frequency
(PHF) injection

Data Types: Boolean

Output

Vαβ hf — PHF output
scalar

Pulsating high frequency voltage (in αβ reference frame) output, in per-unit.
Data Types: single | double | fixed point

θest — Estimated rotor position
scalar

The rotor position estimated by the block, in radians, degrees, or per-unit.

The unit depends on the Position unit parameter.
Data Types: single | double | fixed point

PosEn — Status of θest port
scalar

The port provides one of the following outputs:

 Pulsating High Freq Observer

1-329

• 1 — Indicates that Stage 1 initial position estimation (IPE) is successfully complete and ��est port
outputs accurate position.

• 0 — Indicates that Stage 1 IPE is in progress (θest port output is not accurate yet) or estimation
has failed.

Data Types: single | double | fixed point

Info — Bus signal
bus

The bus signal contains these block calculations.

Signal Description Units
Sin θest and cos θest Sine and cosine of estimated rotor

position
-

Id and Iq Stator direct axis and quadrature axis
currents

A

Convergence Difference between current and
previous sample of θest output.

A value closer to zero indicates
saturation of θest.

rad

Status 0 Block is not enabled (Enable input port
is 0)

-

1 Block is finding the best possible initial
estimate (Stage 1 Part A)

-

2 Block is running pulsating high-
frequency (PHF) method (Stage 1 Part
B)

-

3 Block is running Dual-Pulse (DP)
Method (Stage 1 Part C)

-

4 Block has successfully completed Stage
1 and Stage 2 closed-loop pulsating
high-frequency (PHF) injection has
begun

-

5 Stage 1 Part B failed due to large error
in the estimated rotor position

-

Parameters
Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The time between two consecutive instances of block execution.

Position unit — Unit of position input and output
Radians (default) | Degrees | Per-unit

Units used by θin input and θest output.

1 Blocks

1-330

Datatype — Input and output data type
single (default) | double | fixdt(1,16) | fixdt(1,16,0) | fixdt(1,16,2^0,0) | <data type
expression>

Data type of block inputs and outputs.

PHF Parameters

PHF peak voltage (PU) — Peak voltage of PHF
0.2 (default) | scalar

Peak amplitude of pulsating high frequency (PHF) voltage applied by the block, in Volts.

PHF frequency (Hz) — PHF voltage frequency
2000 (default) | scalar

Frequency of PHF voltage applied by the block, in Hz.

Proportional gain — Proportional gain for PI controller of PHF
3000 (default) | scalar

Proportional PI controller gain, Kp for PHF applied by the block.

Integral gain — Integral gain for PI controller of PHF
4000 (default) | scalar

Integral PI controller gain, Ki for PHF applied by the block.

Cutoff frequency (Hz) — Cut-off frequency for low-pass filter of PHF
500 (default) | scalar

Cut-off frequency for low-pass filter of PHF applied by the block, in Hz.

Open loop duration (s) — Duration of open-loop PHF injection during Stage 1 Part A
5e-3 (default) | scalar

Duration of open-loop PHF injection during Stage 1 Part A, in seconds.

Close loop duration (s) — Duration of closed-loop PHF injection during Stage 1 Part B
0.2 (default) | scalar

Duration of closed-loop PHF injection during Stage 1 Part B, in seconds.

Idle time (s) — Duration between algorithm steps (belonging to Stage 1 Part A and
Stage 1 Part B) to allow fading of transient dynamics
5e-3 (default) | scalar

Duration (in seconds) between algorithm steps (belonging to Stage 1 Part A and Stage 1 Part B) to
allow fading of transient dynamics. For example, this block stops operation for this duration between
each PHF injection (open-loop or closed-loop).

DP Parameters

Pulse voltage (s) — Amplitude of injected pulses
0.4 (default) | scalar

 Pulsating High Freq Observer

1-331

Voltage amplitude of the injected pulses, in Volts.

Pulse duration (s) — Duration of injected pulses
750e-6 (default) | scalar

Duration of the injected pulses, in seconds.

Idle time (s) — Duration between two pulses during dual pulse injection
5e-3 (default) | scalar

Duration (in seconds) between two pulses during dual pulse injection (Stage 1 Part C).

Version History
Introduced in R2022b

See Also
Inverse Clarke Transform

Topics
“Open-Loop and Closed-Loop Control”
“Field-Oriented Control (FOC)”

1 Blocks

1-332

Position Compensation
Compensate for position offset due to different types of delays
Library: Motor Control Blockset / Signal Management

Description
The Position Compensation block compensates for position offset due to different types of delays in a
system.

Motor control algorithms may introduce offsets in the computed position because of different
algorithmic entities such as delays and filters. These offsets affect the accuracy of motor control
algorithms like field-oriented control (FOC) and direct torque control (DTC). This block compensates
for these offsets in the motor control algorithms.

The block uses following computations for sample delay compensation:

Offset introduced by delay = Applied compensation = − Sample time × Number of delay
× angular velocity radians

The block uses following computations for 1st order Butterworth high-pass and low-pass filter
compensation:

• For high-pass filter

Phase_of f set = π
2 − arctan

ωspeed
ωcutof f

= arctan
ωcutof f
ωspeed

Phase_compensation = − arctan
ωcutof f
ωspeed

• For low-pass filter

Phase_of f set = − arctan
ωspeed
ωcutof f

Phase_compensation = arctan
ωspeed
ωcutof f

Ports
Input

θin — Position input value
scalar

Position input value that needs offset correction. This port supports the following range of values:

 Position Compensation

1-333

• -2π to +2π radians
• 0 to 1 per-unit
• -360 to +360 degrees

Data Types: single | double | fixed point

ϕ — Position offset
scalar

Position offset value that is externally computed. This value must have same unit as that of θin input.
This port supports the following range of values:

• -2π to +2π radians
• 0 to 1 per-unit
• -360 to +360 degrees

Dependencies

To enable this port, select External delay for the Nature of offset parameter.
Data Types: single | double | fixed point

ω — Angular velocity
scalar

Externally computed angular velocity. This value indicates change in θin input.

Dependencies

To enable this port, select Sample delay, High-pass filter delay, or Low-pass filter
delay for the Nature of offset parameter.
Data Types: single | double | fixed point

Output

θout — Position output value
scalar

Position output value that is corrected for offset.
Data Types: single | double | fixed point

Parameters
Nature of offset — Type of offset
Constant delay (default) | External delay | Sample delay | High-pass filter delay |
Low-pass filter delay

Type of delay or offset in the system that you want to compensate for. You can select one of the
following values:

• Constant delay — Compensate for a fixed delay or offset.
• External delay — Compensate for a constant delay using an externally computed position offset

value.

1 Blocks

1-334

• Sample delay — Compensate for the delay based on discrete step size or block execution time.
• High-pass filter delay — Compensate for delay from 1st order Butterworth high-pass filter using a
cut-off frequency value.

• Low-pass filter delay — Compensate for delay from 1st order Butterworth low-pass filter using a
cut-off frequency value.

Offset value — Position offset value
0.1 (default) | scalar

Position offset for constant delay in a system.

Dependencies

To enable this parameter, set Nature of offset to Constant delay.

Number of sample delay — Number of block execution time samples
1 (default) | scalar

Number of block execution time samples that the block should use for position offset compensation.

Dependencies

To enable this parameter, set Nature of offset to Sample delay.

Discrete step size (s) — Sample time after which block executes again
50e-6 (default) | scalar

The fixed time interval (in seconds) between every two consecutive instances of block execution.

Dependencies

To enable this parameter, set Nature of offset to Sample delay.

Cut-off frequency (Hz) — Filter cut-off frequency
9.578 (default) | scalar

Cut-off frequency of the 1st order Butterworth high-pass or low-pass filter.

Dependencies

To enable this parameter, set Nature of offset to either High-pass filter delay or Low-pass
filter delay.

Position unit — Unit of position input
Radians (default) | Degrees | Per unit

Unit of position input, θin of block.

Speed unit — Unit of angular velocity input
RPM (default) | Degrees/Sec | Radians/Sec | Per unit

Unit of angular velocity input, ω of block.

Dependencies

To enable this parameter, set Nature of offset to either Sample delay, High-pass filter
delay, or Low-pass filter delay.

 Position Compensation

1-335

Maximum application speed (RPM) — Upper limit of angular velocity
4000 (default) | scalar

Upper limit or maximum possible value of angular velocity input, ω, in RPM.

Dependencies

To enable this parameter, set Nature of offset to either Sample delay, High-pass filter
delay, or Low-pass filter delay.

Version History
Introduced in R2022b

1 Blocks

1-336

	Blocks
	DQ Limiter
	PMSM FeedForward Control
	PMSM Torque Estimator
	Position Generator
	Derating Function
	PI Controller
	3-Phase Sine Voltage Generator
	atan2
	Clarke Transform
	Inverse Clarke Transform
	Inverse Park Transform
	Park Transform
	Sine-Cosine Lookup
	PWM Reference Generator
	Protection Relay
	Hall Speed and Position
	Hall Validity
	Mechanical to Electrical Position
	Quadrature Decoder
	Resolver Decoder
	Software Watchdog Timer
	Speed Measurement
	Sliding Mode Observer
	IIR Filter
	MTPA Control Reference
	Vector Control Reference
	Average-Value Inverter
	Host Serial Receive
	Host Serial Setup
	Host Serial Transmit
	Flux Observer
	Interior PMSM
	Surface Mount PMSM
	Field Oriented Control Autotuner
	ACIM Control Reference
	ACIM Feed Forward Control
	ACIM Slip Speed Estimator
	ACIM Torque Estimator
	Six Step Commutation
	Vector Plot
	Induction Motor
	Sliding Mode Observer
	LUT based PMSM Control Reference
	PMSM Configuration
	PMSM HDL
	Induction Motor Configuration
	Induction Motor HDL
	SRM Commutation
	Pulsating High Freq Observer
	Position Compensation

